
www.manaraa.com

EFFECTIVE SOFTWARE ENGINEERING LEADERSHIP FOR DEVELOPMENT

PROGRAMS

by

Marsha Cagle West

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Management in Organizational Leadership

UNIVERSITY OF PHOENIX

November 2010

www.manaraa.com

UMI Number: 3448401

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3448401

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

© 2010 by Marsha S. Cagle West

ALL RIGHTS RESERVED

www.manaraa.com

www.manaraa.com

ABSTRACT

Software is a critical component of systems ranging from simple consumer appliances to

complex health, nuclear, and flight control systems. The development of quality, reliable,

and effective software solutions requires the incorporation of effective software

engineering processes and leadership. Processes, approaches, and methodologies for

software engineering continue to emerge, yet software programs continue to experience

high failure rates. This qualitative grounded theory study explored the software

engineering and leadership practices applied to software development programs to

identify successful and unsuccessful software development and leadership approaches.

The problem investigated the leadership approaches for the management of software

development programs continuing to result in increased cost, missed deadlines, reduced

reliability, reduced quality, and failed programs. Data was collected from 71 participants

actively involved in software development programs. The study resulted in development

of a software engineering leadership theory focusing on the areas of environment,

resources, and processes. The leadership environment must incorporate approaches for

effective communication, fostering teamwork, empowerment, intelligence, and leadership

by example. Resources for software engineering implement approaches for requirements

management, process application, program planning, and system testing. Effective

software development processes include incremental development, agile methodologies,

CMM/CMMI philosophy, and waterfall development. The integration of environment,

resources, and processes provides a theory for effective software development leadership

resulting in improved product development and increased product quality.

www.manaraa.com

v

DEDICATION

This dissertation is dedicated to the many members of my family who provided

love, support, and encouragement throughout the process. The willingness of family

members to listen when needed, support when required, and assure solitude when

requested provided the environment needed to pursue a doctoral degree. I can never fully

express my gratitude for the continual support during the journey and the encouragement

to pursue any challenge.

www.manaraa.com

vi

ACKNOWLEDGMENTS

The challenge of graduate school presented the opportunity to learn and grow as a

scholar, practitioner, and leader. The learning experience would not have been complete

without the guidance and support of my mentor, Dr. Johnny Morris. I want to thank Dr.

Morris for his guidance and direction during the journey. His mentorship, guidance, and

encouragement provided a clear path for success. Thank you for creating a positive

learning environment and providing valuable insight.

I would also like to thank my committee members, Dr. Douglas LePelley and Dr.

Joseph Baugh. These individuals provided valuable insight in conducting the research

study and developing the dissertation. Their eagerness to provide suggestions for

improvement provided the incentive to strive harder and improve performance. Dr.

LePelley and Dr. Baugh freely shared their knowledge and experience to improve my

learning, research study, and dissertation.

Several leaders and co-workers provided support and encouragement for this

effort. Dr. William Craig, Dr. Willie Fitzpatrick, and Mr. Fred Reed provided guidance

and support on software engineering, leadership, and research. Mr. Jim Sacco, Ms. Sue

McClung, and Ms. Joan Holt were always prepared with words of encouragement.

Finally I want to acknowledge family and friends who were always eager to assist

and quick to encourage. Thank you to everyone who contributed to my education and

growth. Thanks to each of you, the journey was rewarding and successful. Knowing such

a tremendous and eager support system is available provides the courage to pursue the

next challenge.

www.manaraa.com

vii

TABLE OF CONTENTS

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

CHAPTER 1: INTRODUCTION .. 1

Background of the Problem ... 2

Statement of the Problem ... 4

Purpose of the Study .. 5

Significance of the Problem ... 6

Significance of the Study .. 7

Significance of the Study to Leadership ... 8

Nature of the Study .. 9

Overview of the Research Method ... 10

Overview of the Design Appropriateness ... 10

Research Questions .. 11

Theoretical Framework .. 12

Definition of Terms.. 16

Assumptions ... 20

Scope and Limitations.. 21

Delimitations .. 23

Summary .. 23

CHAPTER 2: REVIEW OF THE LITERATURE .. 25

Title Searches, Articles, Research Documents, and Journals 25

History of Software Engineering ... 26

www.manaraa.com

viii

Software Life Cycle Methodologies .. 30

Waterfall Development ... 31

Model Driven Development ... 34

Agile Development ... 36

Software Process Improvement ... 39

Capability Maturity Model (CMM) .. 40

Capability Maturity Model Integrated (CMMI) ... 42

International Organization for Standardization (ISO) 43

Six-Sigma ... 45

Distributed Software Development.. 47

Communication and Collaboration in Distributed Teams 48

Formal and Informal Processes for Distributed Teams 50

Software Program Failure Rates .. 55

Leadership Paradigms .. 57

Transactional Leadership .. 57

Transformational Leadership .. 58

Leadership Capabilities .. 60

Empowerment ... 61

Communication/Collaboration ... 62

Risk Management ... 63

Knowledge Management .. 65

Conclusion ... 67

Summary .. 68

www.manaraa.com

ix

CHAPTER 3: RESEARCH METHODS ... 71

Research Method and Design Appropriateness ... 72

Research Questions .. 78

Population .. 79

Sampling Frame ... 79

Informed Consent ... 82

Confidentiality .. 83

Geographic Location .. 83

Data Collection .. 83

Instrumentation .. 84

Validity and Reliability .. 90

Data Analysis ... 91

Summary .. 94

CHAPTER 4: RESULTS ... 97

Findings.. 97

Data Collection ... 97

Pilot Study .. 99

Instrumentation ... 100

Study Population ... 101

Data Collection Results versus Plan ... 106

Biases .. 107

Research Questions .. 107

Themes Identified .. 109

www.manaraa.com

x

Data Analysis .. 111

Coding the Data .. 114

Question 4: Effective Leadership Approaches .. 117

Theme 1: Empowerment of Individuals ... 118

Theme 2: Fostering Teamwork ... 119

Theme 3: Effective Communication ... 119

Question 5: Important Leadership Characteristics ... 119

Theme 1: Effective Communication ... 120

Theme 2: Leadership by Example .. 121

Theme 3: Experience and Intelligence ... 121

Theme 4: Empowerment of Individuals ... 121

Question 6: Successful Leadership Capabilities .. 122

Theme 1: Effective Communication ... 122

Theme 2: Fostering Teamwork ... 123

Theme 3: Experience and Intelligence ... 123

Theme 4: Empowerment of Individuals ... 124

Question 7: Unsuccessful Leadership Approaches .. 124

Theme 1: Indecisive or Inadequate Leadership .. 125

Theme 2: Inadequate Planning ... 125

Theme 3: Inadequate Communication .. 126

Theme 4: Inadequate Experience or Knowledge .. 127

Theme 5: Arrogant or Ego Driven Leadership ... 127

Question 8: Successful Software Processes ... 127

www.manaraa.com

xi

Theme 1: Requirement Definition and Management 128

Theme 2: Established Procedures and Processes .. 129

Theme 3: Effective Planning and Scheduling .. 129

Theme 4: Adequate Testing .. 130

Question 9: Effective Development Methodologies .. 130

Theme 1: Iterative Development .. 131

Theme 2: Agile Development ... 131

Theme 3: Waterfall Development .. 132

Theme 4: CMM/CMMI .. 132

Question 10: Ineffective Development Methodologies ... 133

Theme 1: Lack of Management Not Process .. 133

Theme 2: Waterfall Development .. 134

Question 11: Additional Comments... 134

Summary .. 135

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 138

Conclusions .. 138

Research Questions and Theory Development ... 139

Leadership Environment Category ... 139

Emerging Theory for Leadership Environment .. 144

Software Resource Category .. 146

Emerging Theory for Software Development Resources 150

Software Process Category ... 152

Emerging Theory for Software Development Processes 156

www.manaraa.com

xii

Theory for Effective Leadership for Software Development Programs 157

Uniqueness of Findings .. 161

Limitations ... 162

Implications.. 162

Recommendations .. 166

Recommendations for Leadership .. 166

Recommendations for Future Research .. 167

Summary .. 168

REFERENCES .. 172

APPENDIX A: PERMISSION TO USE PREMISES ... 197

APPENDIX B: STUDY INVITATION .. 199

APPENDIX C: INFORMED CONSENT .. 201

APPENDIX D: QUESTIONNAIRE.. 204

APPENDIX E: DEMOGRAPHIC INFORMATION FOR OPEN-ENDED

QUESTIONS ... 211

www.manaraa.com

xiii

LIST OF TABLES

Table 1 Respondent Overview ... 102

Table 2 Participant Information on Job Function ... 103

Table 3 Participant Years of Experience Leading Software Development 104

Table 4 Participant Years of Experience in Software Engineering 105

Table 5 Open-ended Questions and Respondents .. 111

Table 6 Themes for Question 4 Effective Leadership Approaches 118

Table 7 Themes for Question 5 Important Leadership Characteristics 120

Table 8 Themes for Question 6 Successful Leadership Capabilities 122

Table 9 Themes for Question 7 Unsuccessful Leadership Approaches 125

Table 10 Themes for Question 8 Successful Software Processes 128

Table 11 Themes for Question 9 Effective Development Methodologies 131

Table 12 Themes for Question 10 Ineffective Development Methodologies 133

Table 13 Frequency of Environmental Themes for Participant Responses 140

Table 14 Frequency of Resource Themes for Participant Responses 147

Table 15 Frequency of Process Themes for Participant Responses 153

www.manaraa.com

xiv

LIST OF FIGURES

Figure 1. Frequency of participants by job function. .. 103

Figure 2. Participant years of experience leading software development efforts. . 105

Figure 3. Participant years of experience in software engineering. 106

Figure 4. Coding process, sample codes, and derived themes for software

engineering leadership. .. 115

Figure 5. Coding process, sample codes, and derived themes for software

engineering resources... 116

Figure 6. Coding process, sample codes, and derived themes for software

engineering processes. ... 117

Figure 7. Environmental component for emerging leadership theory. 146

Figure 8. Resource component for emerging leadership theory. 152

Figure 9. Process component for emerging leadership theory. 157

Figure 10. Theory for successful software development leadership. 160

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

Software is present in many systems used everyday ranging from items such as

home appliances and mobile telephones (Stackpole, 2008) to next-generation automobile

navigation systems and flight control systems for the United States Space Shuttle

(Schneidewind, 2007). The field of software engineering focuses on developing and

implementing software programs for simple and complex applications (Sommerville,

2007). Software engineering involves the integration of the complex processes of

software design, development, testing, and integration for software intensive systems

(Pfleeger & Atlee, 2010; Sommerville).

Leadership of software development programs requires the application of

development processes throughout the software engineering life cycle (Gefen, Zviran, &

Elman, 2006). Even with the continued identification and implementation of development

processes, software programs continue to experience failures resulting in increased costs

and delayed product availability to consumers (Gottesdiener, 2008; Woolridge, Hale,

Hale, & Sharpe, 2009). To improve software engineering efforts, leadership must identify

and implement the most effective processes for the development life cycle (Tesch,

Kloppenborg, & Frolick, 2007). This study explored leadership approaches for software

engineering to identify processes for improvement, which may reduce project failures,

cost overruns, and reliability issues in software development programs.

Chapter 1 provides background information on software engineering programs

and the impact of failed development efforts. Determining leadership and development

processes which contribute to successful project outcomes, processes which result in

negative impacts, and processes which require improvement, may assist leadership in

www.manaraa.com

2

improving software engineering approaches for the project life cycle. Chapter 1 presents

the research problem, research purpose, study significance, theoretical framework,

assumptions, and limitations for the study.

Background of the Problem

As technology and computer applications continue to grow, expand, and improve,

the demand for complex, reliable software applications also increases (Adams, 2008;

Pressman, 2010; Sommerville, 2007). Software is an integral part of products used in

everyday and advanced applications for consumers and industry (Basili et al., 2008;

Probert, Hunt, Fraser, Fleury, & Holden, 2007). As Booch (2008) noted, “we as a

professional community have developed technology that has changed the way individuals

live, businesses operate, communities interact, and nations and civilizations thrive and

expand” (p. 8). Failures in commercial software programs result in delayed availability,

reduced quality, and increased cost to the consumer (Basili et al.; Rubinstein, 2007).

Failures in Government and military software programs result in reduced capability,

limited availability, and increased cost to the taxpayer (King, 2007).

The field of software engineering continues to grow and evolve (Pressman, 2010;

Sommerville, 2007). The increased failure rate of software programs results in reduced

quality products, increased costs, and delayed programs (Pressman; Sommerville).

Software development initiatives often fail and completed projects are often more costly

to produce than originally predicted (Adams, 2008). In the United States, annual

expenditures on software development projects are approximately $275 billion with 70%

of development efforts unsuccessful (Wallace & Keil, 2004). Software engineering

programs often exceed budget and schedule as a result of the implemented development

www.manaraa.com

3

and leadership processes. Application of standardized software engineering processes to

software development programs often leads to excessive cost overrun and program

failures (Pino, Garcia, & Piattini, 2008; Sommerville, 2007).

The Standish Group report noted for projects completed, 46% resulted in time and

cost overruns (Rubinstein, 2007). Telang and Wattal (2007) noted faulty software costs

organizations in the United States approximately $60 billion per year. These increased

costs, delayed availability, and reduced quality result in impacts to individuals,

organizations, and society (Kirova, Kirby, Kothari, & Childress, 2008). These impacts

range from minor inconveniences from failures of home appliances to errors in health

care, transportation, aerospace, and nuclear industries which can result in injury or death

(Adams, 2008; Kruchten, 2008).

Research has shown project leadership is a critical success factor of any software

program encompassing organizational factors such as culture, strategy, and interaction

(Tesch et al., 2007). Ineffective leadership processes increase the risk of project failure

and the inability to reach organizational goals (Tesch et al.). Sapienza (2005) observed

ineffective leadership for software development programs impacts schedule, cost,

employee morale, and product quality. In the information technology (IT) environment,

research revealed complex IT projects resulted in failure with only 16% of projects

considered successful (Brown & McDermid, 2008). The most noted reason for failure of

these projects related to leadership inability to implement best practices for software

development (Brown & McDermid). Reducing the occurrences of failed or incomplete

development efforts requires the application of leadership processes to meet functionality

www.manaraa.com

4

requirements while providing reliable and quality software on schedule and within budget

(Agrawal & Chari, 2007).

 Statement of the Problem

The general problem concerns the continuing high failure rate for software

development programs (Sommerville, 2007; The Standish Group, 2009). The software

engineering field encompasses a framework of paradigms, methodologies, and

approaches to software development (Pressman, 2010; Sommerville). Even with the

incorporation of these approaches, software development programs continue to have high

failure rates affecting individual and business environments (Dalcher & Benediktsson,

2006). These software failures result in organizational cost overruns, increased schedule,

and failure to meet consumer needs (Gefen et al., 2006).

Complex systems and common computer based products require software to

function (Brown & McDermid, 2008; Sommerville, 2007). Organizations depend on

successful software development programs to support computer applications (Hadar &

Leron, 2008), military systems (King, 2007), and space program initiatives

(Schneidewind, 2007). Consumers depend on computer products for everyday

applications. Software is an integral part of the products used daily by consumers

(Linden, Ortega, & Hong, 2010; Xu & Brinkkemper, 2007). Cellular phones, satellite

television, automobile systems, and aircraft flight programs all rely on integrated

software (Adams, 2008). The specific problem is current leadership approaches to the

management of software development programs continue to result in increased cost,

missed deadlines, reduced reliability, reduced quality, and failed programs (Cerpa &

Verner, 2009; Dalcher & Benediktsson, 2006; Gottesdiener, 2008; Horn, 2009; Mizell &

www.manaraa.com

5

Malone, 2007; Mukherjee, 2008; Pino et al., 2008; Sommerville; The Standish Group,

2009; Xu & Brinkkemper).

Purpose of the Study

The purpose of this qualitative grounded theory study investigated leadership and

development practices applied to software development programs to determine which

processes are effective, beneficial, and applicable to achieving successful program

outcomes. A qualitative study was appropriate to collect textual data from participants,

ask broad general questions, and analyze these responses for themes in a subjective

manner (Creswell, 2008; Shank, 2006). The goal of this study was to explore and analyze

leadership and development processes for software engineering to identify a grounded

theory of characteristics that result in successful software development programs. The

research explored the experiences and unique perceptions of leaders and software

developers actively involved in software development programs.

Theoretical sampling was used to select participants with experience leading

software engineering efforts and developing software programs. Theoretical sampling

provided participant selection relative to the investigation of the research question and

purpose to provide insight for the developing theory (Bogdan & Biklen, 2007; Corbin &

Strauss, 2008; Creswell, 2008; Leedy & Ormrod, 2005; Neuman, 2003; Shank, 2006).

The researcher selected participants from the population with experience and

backgrounds that provide knowledge and information to address the research purpose

(McMillan & Schumacher, 2006).

The study invitation was provided to a research and development organization in

Alabama with a population of 600 employees. The demographic questions were used to

www.manaraa.com

6

select the individuals with experience in software engineering and leadership. The

number of participants was 12% of the invited population or 71 respondents.

This study employed a grounded theory design to examine processes and develop

theories on which leadership practices and processes facilitate successful programs.

Qualitative grounded theory concentrates on participant actions and interactions related to

a topic of study to develop a theory on the processes and relationships (Corbin & Strauss,

2008; Creswell, 2008; Glaser & Strauss, 1967, 2007; Leedy & Ormrod, 2005). The

grounded theory design was appropriate for the study to obtain information from software

development leaders to identify trends, behaviors, and characteristics (Creswell; Glaser &

Strauss) for successful management of software programs. Creswell noted grounded

theory designs are appropriate when attempting to investigate and describe views, beliefs,

attitudes, or aspects for a particular group.

The grounded theory research design focused on generating theory instead of

proving theory (Glaser & Strauss, 2007) on leadership processes for improving software

development initiatives. This study explored leadership approaches and software

development methodologies to determine processes which are successful, processes

which are negative impacts to performance, and processes which require update to

enhance program development initiatives. The study focused on leaders and team

members of software development programs at a research organization in Alabama.

Significance of the Problem

The software engineering field encompasses numerous methodologies,

paradigms, and quality processes for use in development programs (Pressman, 2010;

Sommerville, 2007). Application of these approaches does not always result in successful

www.manaraa.com

7

projects (Adams, 2008; Dalcher & Benediktsson, 2006; Gefen et al., 2006). Software

development programs experience high failure rates resulting in cost overruns, increased

schedule, reduced quality, and failure to meet consumer demands (Adams; Dalcher &

Benediktsson; Gefen et al.). Investigation of the leadership and development approaches

applied to software development programs could result in development of theories and

approaches that are significant to leadership and the field of software engineering.

Significance of the Study

Due to the demand for improved software technologies, the number of software

development projects started tend to double every 2 to 3 years, but the success rate for

programs has not substantially improved (Tesch et al., 2007; The Standish Group, 2009).

Software programs continue to experience large failure rates resulting in increased costs,

reduced capabilities, and product delays to consumers and organizations (Dalcher &

Benediktsson, 2006; Horn, 2009; Jones, 2008; Mizell & Malone, 2007; Rubinstein, 2007;

Tesch et al.). The research study contributed to the body of software engineering

information through the identification of processes, approaches, and practices which

contribute to the increasing failure rates for software programs.

The grounded theory research design supported the development of theory for

leadership processes based on the raw data collected on experiences and perceptions

(Glaser & Strauss, 2007). Identification of effective and ineffective processes may lead to

continued process improvement to enhance the success rate for development programs.

The themes and trends identified in this study contribute to the development of theories

and models (Creswell, 2008; Shank, 2006) for successful software development. The

software engineering community may improve the state of the practice through the

www.manaraa.com

8

development of leadership and process theories which contribute to the success of

software development programs. The identification of processes considered negative

impacts to performance and project success may provide additional areas of research and

opportunities for improvement.

Significance of the Study to Leadership

Leadership focuses on improving the performance of software engineering

programs by applying the best applicable practices and procedures to maximize

resources, maintain quality standards, and produce usable artifacts (Gefen et al., 2006).

Leadership approaches and processes are critical success factors for software engineering

and development programs (Tesch et al., 2007). To improve the success of software

development programs, leadership must focus on identification of successful practices,

removal of negative practices, and recognize opportunities to improve practices to

maximize resources, maintain quality standards, and produce usable artifacts (Gefen et

al.). Identification of successful practices and procedures are essential to achieving

successful software development programs for leadership (Brown & McDermid, 2008).

This study was significant to software engineering leadership since the data

collected was used to develop theories on leadership processes for successful software

engineering. The numerous paradigms, development methodologies, and process

improvement initiatives are not a straightforward solution to software development

(Pressman, 2010; Sommerville, 2007). Individual development efforts select and tailor

available approaches and methods to match goals and objectives. The changing software

environment requires new and updated processes (Basili & Zelkowitz, 2007; Bell, 2008;

www.manaraa.com

9

Glass, 2008; Sommerville) to meet the growing challenges for leadership in software

development (Boehm & Valerdi, 2008).

This qualitative grounded theory study investigated the views and perspectives of

software development leadership and experts. The data collected was analyzed to identify

trends and themes on leadership characteristics and development processes that result in

successful and unsuccessful programs. The data collected contributed to the development

of theories and methodologies for enhancing leadership performance during software

development efforts. The identification of successful and unsuccessful leadership

approaches for software development activities may contribute to the improvement in

leadership approaches and provided additional insight into appropriate methods to

integrate into software engineering activities for success. Results of the study contributed

to the software engineering body of knowledge to expand the available information on

leadership approaches and development processes that should be applied to improve

software development program initiatives.

Nature of the Study

The research problem, research question, and research goals determine the

research method and design to be used to obtain data relevant to the topic of study

(Creswell, 2008; Glaser & Strauss, 2007). The nature of this study focused on obtaining

views, observations, and perspectives from a specific population with experience in

software engineering. The following sections provide a discussion of the selection of a

qualitative grounded theory research design as an appropriate framework to study

leadership attributes and processes that lead to successful software development

programs.

www.manaraa.com

10

Overview of the Research Method

This qualitative study used a grounded theory design to investigate the leadership

process and practices applied to software development programs to explore and

understand the approaches that lead to program success. The qualitative study supported

collecting observations and results on the application of various software development

processes from leadership and team members. The data collected from study participants

was obtained by developing general open-ended questions on software engineering

methodologies, approaches, and processes. The study responses were analyzed to identify

trends, themes, characteristics, and behaviors which support successful programs.

A qualitative research methodology was appropriate to this study to explore

leadership processes and characteristics that contribute to successful software engineering

programs. The intent of this study was not to measure specific dependent and

independent variables related to program failures as is performed in quantitative research

(Creswell, 2008). The intent of this study was to generate a theory of leadership processes

that contribute to successful software development initiatives based on experiences and

observations (Bogdan & Biklen, 2007).

Overview of the Design Appropriateness

This qualitative research study used a grounded theory design to explore the

experiences and perceptions of software engineering leadership. The grounded theory

design was appropriate for the qualitative data collection to pose general, broad questions

to participants to obtain unrestricted perspectives (Creswell, 2008). The grounded theory

design allowed respondents to provide thoughts, views, and perspectives (Corbin &

Strauss, 2008) on software engineering and leadership processes. The results obtained

www.manaraa.com

11

were reviewed to identify trends, themes, and concepts on successful and unsuccessful

software engineering processes.

Research Questions

This qualitative grounded theory research study focused on leadership practices

for software engineering programs. The research question focused on the investigation of

leadership impacts for program development. Research question 1: What leadership

characteristics contribute to the positive outcome of software development programs?

The supplemental research questions focused on software practices. Research question 2:

What software practices contribute to the development of successful projects? Research

question 3: What software practices result in negative impacts to projects? These research

questions guided and focused the study on the investigation and identification of

processes and practices that lead to successful software development programs and the

impacts of leadership approaches.

Woolridge et al. (2009) observed proper leadership planning and management

may decrease the project failure rate by providing effective scope definition approaches.

Subject matter experts in the field of software engineering have investigated the

effectiveness of software processes (Boehm, 2006; Kenett & Baker, 2010). Additionally,

scholars have researched improvements in processes for software development (Beadell,

2009; Bonner, 2008; Sun, 2008) or improvement in leadership capabilities (Early, 2006;

Jain, 2007; Johnson, 2008). The research questions for this study focused on effective

integration of leadership capabilities and software processes for success. A grounded

theory study focusing on leadership and process added to the existing body of knowledge

by integrating the leadership and process dimensions for software engineering.

www.manaraa.com

12

Theoretical Framework

 This research study was under the broad theoretical areas of organizational

paradigms, leadership, productivity, and process improvement. Effective leadership is

critical to the continued success and growth of any organization (Miller & Desmarais,

2007). In the field of IT, leadership must modify and improve the leadership processes to

meet the challenges of ongoing growth and complexity in the technical environment (El

Emam & Koru, 2008; Mukherjee, 2008).

Leading a diverse and distributed team of software engineering experts in

developing and implementing successful projects requires the effective balancing of

resources, environment, and processes (Cusumano, 2008). The open system paradigm

provided a framework for integrating the leadership approaches to resources,

environment, and processes (National Defense University, 2009). This research study

investigated software development leadership in the framework of open systems.

The main research question 1 investigated the leadership environment for

software development to identify characteristics that support successful programs. The

secondary research question 2 and research question 3 investigated the processes and

resources applied to development programs. The open system paradigm combines

environment, processes, and resources to develop a complete system approach (Bloch,

2008; Scott & Davis, 2007). This methodology provided a framework for investigating

software engineering initiatives to develop theories and methods for leadership success.

The field of software engineering and IT contain many research studies

investigating methods for improvement in program initiatives (Early, 2006; El Emam &

Koru, 2008; Gefen et al., 2006; Jain, 2007). Research studies have been conducted to

www.manaraa.com

13

explore process improvement (Boynton, 2007; Jain), development methodologies

(Agerfalk & Fitzgerald, 2006; Bonner, 2008; Cantor, 2002), and leadership approaches

(Boseman, 2008; Denning, 2007; Kerzner, 2009). This research study added to the

software engineering body of knowledge for leadership approaches for successful

software development programs. The open system paradigm provided a framework for

integrating the process improvement initiatives, development methodologies, and

leadership approaches.

The software engineering community consists of numerous paradigms, processes,

and approaches (Adams, 2008; Boehm, 2006; Kenett & Baker, 2010). Numerous

perspectives exist on the most effective process, method, or approach (Boehm; Hinchey

et al., 2008; Kenett & Baker). Some experts support traditional methodologies and

structured processes (Adams; Cantor, 2002; Hinchey et al.) whereas other experts support

less structured approaches and more agile processes (Agerfalk & Fitzgerald, 2006;

Bonner, 2008; Johnson, 2008). Although these studies address individual aspects of

success for software development, a gap exists on the integration of leadership

approaches to individual components of the numerous methodologies and paradigms.

Achieving success in software development often depends on the ability of leadership to

select and effectively apply selected methodologies and approaches (Adams; Basili et al.,

2008).

 In the software engineering organization, success depends on the identification

and implementation of successful leadership theories and paradigms (Jianguo, Jinghui, &

Hongbo, 2008). As observed by Warzynski (2005), organizational and leadership

“development is a process in which people, work processes, structures, and technologies

www.manaraa.com

14

are developed, integrated, and aligned to strengthen an organization’s economic

performance or increase its capacity to adapt and respond effectively to the environment

in which it operates” (p. 338). Developing a software engineering leadership approach

that encompasses the open system paradigm theories provides a framework for continual

evaluation, assessment, and improvement (National Defense University, 2009).

The open system paradigm integrates resources, environment, and processes to

develop a cohesive synergistic approach and structure to leadership (National Defense

University, 2009). Open system approaches focus on a larger context above the

immediate benefits to the organization by incorporating the impacts to individuals,

organizations, and society (Scott & Davis, 2007). Leadership following the open system

paradigm integrates the critical success attributes of self-regulation, knowledge sharing,

environmental awareness, flexibility, diversity, innovation, and creativity (National

Defense University).

To maintain pace with the expanding and changing technical environment for

software engineering, leadership must embrace the tenets of self-regulation and self-

maintenance (Jianguo et al., 2008). The open system paradigm emphasizes the

importance of monitoring, modifying, and correcting processes throughout the program

life cycle (Bloch, 2008). The open system paradigm focuses on increasing production and

productivity and encompasses the concept of continual process improvement by

identifying opportunities for improvement, actively pursuing improvements, and

changing paradigms as required (Bloch).

Successful and innovative leadership for software development requires effective

internal and external communication (Bharadwaj & Saxena, 2006). In the open system

www.manaraa.com

15

paradigm, enhanced communication is a result of the emphasis on information sharing

and knowledge development (Scott & Davis, 2007). This environment promotes

information flow between internal environments and external entities as required

(Landaeta, 2008). Leadership encourages open, flexible, and adaptive information flow

and communication throughout the structure and environment to foster improved

development efforts (Stephenson & Sage, 2007). As noted by Johnson-Cramer, Parise,

and Cross (2007), developing networked and boundless information flow approaches

promoted effective interagency collaboration, learning, and knowledge sharing.

Implementing leadership processes for communication within the open system

paradigm improves the effectiveness of the organization by disseminating the vision,

sharing feedback, involving employees, integrating stakeholders, and improving

innovation (Lewis, 2006). Open system leadership is flexible, adaptable, willing to take

risks, and celebrates diversity (Claiborne, 2007). Flexible organizations seek

opportunities for improvement, are willing to adapt when opportunities arise, and accept

risks for growth and improvement (Claiborne).

Leadership in the open system paradigm focuses on developing an effective

integration of resources, environment, and processes to meet defined goals and objectives

(Lewis, 2006). Innovation, creativity, and information sharing flourish through leadership

integration of effective processes for collaboration (National Defense University, 2009).

Open systems leadership implements and evolves an environment which encourages,

fosters, and implements initiatives to introduce new processes, improve existing

processes, and remove ineffective processes (Claiborne, 2007). Through the framework

of the open system paradigm, leadership for software development can implement

www.manaraa.com

16

integrated approaches for success, embrace opportunities for improvement, remain

competitive in the technical environment, and enhance the success rate for software

engineering initiatives (Claiborne; Lewis; Stephenson & Sage, 2007).

Definition of Terms

 This research study presented terms and concepts which might have unique

definitions related to leadership for software engineering. The following terms, in

alphabetical order, focus on software development leadership.

 Agile software development. The “practice of software development that assumes

short development iterations with a fast realization of an executable software system that

contains only a small part of functionality according to direct user input” (Pozgaj, Sertic,

& Boban, 2007, p. 75).

 Basic software process. A basic process for software engineering is a “basis for

the development of computer programs with the use of a body of knowledge, LC

standards, the infrastructure, and management in a developer organization”

(Lavrishcheva, 2008, p. 331).

 Canceled project. A canceled project is a development effort that did not deliver

any usable functionality or a project terminated before completion (El Emam & Koru,

2008).

 Challenged project. “Challenged projects are completed and approved projects

that are over budget, late, and with fewer features and functions than initially specified”

(Dalcher & Benediktsson, 2006, p. 51).

 Capability maturity model (CMM). “A system for measuring the quality of the

processes used within a software development organization. The CMM provides a means

www.manaraa.com

17

for the qualitative evaluation of processes without the need to follow a specific

methodology” (Douglas, 2006, p. 28).

 Collaboration. Collaboration involves the focused and coordinated effort of a

collection of individuals with a shared understanding and common objective (Hadar,

Sherman, & Hazzan, 2008).

 Collaborative software development. Collaborative software development

encompasses “the multiple teams, working for multiple organizational units within the

same or different companies” (Mohtashami, Marlowe, Kirova, & Deek, 2006, p. 20).

 Culture. Several definitions exist for culture. In an organizational context,

“culture refers to the entire organization, its values, strategic goals, and the formal and

informal systems in place that guide managers and employees in everyday work life”

(Lindbom, 2007, p. 101).

 Defining the process. For software engineering, “defining the process means that

all the activities to be performed have to be clearly stated, including the order in which

they are to be performed and when they are considered complete” (McManus & Wood-

Harper, 2007a, p. 316).

 Failed project. A failed project is “canceled before completion, never

implemented, or scrapped following installation” (Dalcher & Benediktsson, 2006, p. 51).

 Key process area (KPA). One definition for KPA stated a KPA “contains the

goals that must be reached in order to improve a software process. A KPA is said to be

satisfied when procedures are in place to reach the corresponding goals” (McManus &

Wood-Harper, 2007a, p. 323).

www.manaraa.com

18

 Management process. The term management process “refers to the activities that

are undertaken in order to ensure that the software engineering processes are performed

in a manner consistent with the organization’s policies, goals, and standards” (Institute of

Electrical and Electronics Engineers [IEEE], 2004, p. 8-2).

Project. Projects consist of multiple attributes and concepts. For software

engineering a project is:

any series of activities and tasks that: have a specific objective to be completed

within certain specifications, have defined start and end dates, have funding limits

(if applicable), consume human and nonhuman resources (i.e.., money, people,

equipment), [and] are multifunctional (i.e., cut across several functional lines).

(Kerzner, 2009, p. 2)

 Project management. Project management is the management over the

“development of a project, using a management theory adapted to the type of project and

processes” (Lavrishcheva, 2008, p. 330).

 Risk management. “Risk management is a routine practice of software

development and project management. It deals with anticipating, preventing, and

mitigating problems arising in the software product, project, or process, including

difficulties in personnel, communication, and coordination” (Mohtashami et al., 2006, p.

20).

 Software development effort. According to Agrawal and Chari (2007), software

development effort is:

The total effort beginning with the end of the requirements specification stage

until the end of customer acceptance testing. It includes effort during high-level

www.manaraa.com

19

design, detailed design, coding, unit testing, integration testing, and customer

acceptance testing. (p. 148)

 Software development methodologies. Erdogmus and Williams (2003) observed

“methodologies, or processes, are prescribed, documented collections of software

practices (specific methods for software design, test, requirements documentation,

maintenance, and other activities) required to develop or maintain software” (p. 284).

 Software engineering. Several definitions exist for software engineering. A basic

definition is “the application of systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of

engineering to software” (IEEE, 2004, p. 1-1). An expanded definition is:

A system of methods and means of programming, engineering of planning and

team processes, management of manufacturing computer software systems

(software support, applications, families of systems, and software projects),

methods of measurement and estimation of the compatibility of their various

characteristics as to their conformity with customer’s requests. (Lavrishcheva,

2008, p. 325)

Software engineering management. Software engineering management can be

“defined as the application of management activities – planning, coordinating, measuring,

monitoring, controlling, and reporting – to ensure that the development and maintenance

of software is systematic, disciplined, and quantified” (IEEE, 2004, p. 8-1).

Software intensive system. An IT system where “software is a major component

and that much of the functionality is achieved via software rather than hardware

implementations” (Hinchey et al., 2008, p. 55).

www.manaraa.com

20

 Software process. “A set of activities, methods, practices, and transformations

which people use to develop and maintain software and the associated products” (IEEE,

2004, p. 6-5).

 Software project. “A unique and integrated product that represents collections of

realized objectives, solved problems, and obtained results of activity that satisfy the

requirements of the customer of the project” (Lavrishcheva, 2008, p. 327).

Assumptions

 This research study incorporated the following assumptions. The first assumption

was respondents to the interview questionnaire will provide honest responses to the open-

ended questions on leadership and software engineering processes. Failure to provide

honest responses may influence the study validity and results of the qualitative grounded

theory study (Neuman, 2003; Shank, 2006).

The second assumption was respondents to the study have experience in

leadership, process improvement, or software engineering. Respondents without

knowledge in the area of study could result in inappropriate responses affecting the

accuracy of the data review, analysis, and theory development (Bogdan & Biklen, 2007;

Neuman, 2003; Shank, 2006). Respondents to the interview questionnaire had personal

experience in software development, software methodologies, software processes, and

leadership impacts. Skip logic was employed in the electronic interview questionnaire to

remove and eliminate responses for participants not meeting the sampling criteria.

The third assumption was the respondent who returned the questionnaire was the

individual who completed the questionnaire and the observations and perceptions are

based on the personal experience of the participant. A potential existed for participants to

www.manaraa.com

21

have the questionnaire completed by other individuals. The data collected for analysis

may not be accurate if an individual other than the respondent completes the interview

questionnaire (Bogdan & Biklen, 2007; Shank, 2006).

Scope and Limitations

 Several limitations could affect the validity of the research, data analysis, data

collection, and study conclusions. The study scope was limited to research and

development organizations in Alabama. The data analysis and study results may reflect

individual perceptions and opinions based on the operations in the localized area,

economic impacts, and job stability. Qualitative studies do not “entail the sampling

procedures or sample size required to generalize systematically to some wider population

or context” (Schram, 2006, p. 87). The study did not attempt to generalize the results to

varying populations or geographic locations.

As Creswell (2008) observed “the intent of qualitative research is to establish the

detailed meaning of information rather than to generalize the results and standardize the

responses” (p. 141). Qualitative research focuses on investigating a depth of information

on the research topic instead of simplifying the understanding of a phenomenon (Shank,

2006). In this setting, the findings are not generalized to the population but rather are

applicable to a particular phenomenon (Bogdan & Biklen, 2007). The objective of this

study was to identify trends and themes using grounded theory methodology that may be

used by other software development organizations and the results may not be generalized

to varying populations (Creswell).

A potential limitation for the study was the implementation of an Internet

interview questionnaire to collect participant responses. The availability of participants

www.manaraa.com

22

may not yield a sufficient sample size to result in saturation or meaningful conclusions.

The study invitation was provided to the organization population of 600 employees with

a response rate of 12% or 71 respondents. In grounded theory research, small sample

sizes are common and do not prevent the formulation of theories grounded in the raw

data (Creswell, 2008; Suzuki, Ahluwalia, Arora, & Mattis, 2007).

Glaser and Strauss (1967) noted saturation results when the responses are not

generating any additional findings. The electronic interview questionnaire provided data

based on the response rate and time allocated for participation. Grounded theory research

seeks “themes that will eventually serve as the bases for theory” (Shank, 2006, p. 150).

Creswell (2008) and Suzuki et al. (2007) observed that for qualitative research small

sample sizes often result in a rich data set for evaluation. The researcher did not seek to

obtain saturation, but rather a rich data set for evaluation and analysis.

Respondents to the questionnaire may not have exercised due diligence in

providing accurate representations and perceptions. Failure of the participant to represent

best effort in responding to the questionnaire could influence the validity of the study

results (Shank, 2006). The study results reflect the participant’s perceptions, views, and

beliefs during the timeframe of interview questionnaire distribution (Creswell, 2008;

Neuman, 2003).

The data collected was evaluated for common themes and trends for data analysis

by the researcher. Shank (2006) observed “any thematic analysis will reach saturation”

(p. 150). Due to the time constraints for the present study, a static sampling method was

used in which all data was gathered prior to analysis (McCleaf, 2007; Polkinghorne,

www.manaraa.com

23

2005). The researcher used the collected data for data analysis to develop theories on

leadership for software development initiatives.

Delimitations

 This qualitative research study involved research and development organizations

in the state of Alabama. The study focused on obtaining leadership and software

development team views and perceptions on software engineering techniques, software

development process, and leadership approaches. This study attempted to address the

leadership processes for improvement in software engineering projects.

To assure respondent confidentiality, descriptive information such as name, age,

gender, race, specific job title, and organizational division was not collected. The

questionnaire only collected basic demographics related to organizational role, years of

software engineering experience, and years of leadership experience. The interview

questionnaire did not provide the opportunity for the researcher to ask additional

clarifying or probing questions to obtain expanded participant views (Creswell, 2008;

Shank, 2006). Although the study results are limited to perceptions on software

engineering leadership in a research organization in Alabama, the research could be

repeated in other organizations and geographic areas.

Summary

Chapter 1 presented an overview of the impacts of failed and unreliable software

development programs. Software exists in every aspect of life and has the potential for

minor to catastrophic impacts (Sommerville, 2007). From common consumer products to

complex flight navigation systems, software affects every individual, organization, and

society (Schneidewind, 2007; Stackpole, 2008). Leadership for software engineering

www.manaraa.com

24

strives to reduce cost while improving software performance, reliability, and availability

(Pressman, 2010; Schneidewind; Sommerville).

In 2009, the Standish Group reported project success rates of only 32%, a

decrease from the 35% reported in 2006, with failure rates increasing from 19% in 2006

to 24% in 2009 (Rubinstein, 2007; The Standish Group, 2009). These results emphasized

the need for evaluation and enhancement of existing software development leadership

processes (The Standish Group). The implementation of leadership processes for

software development may contribute to project success and improved product

performance.

The qualitative grounded theory research study investigated leadership

approaches to software engineering to identify processes for improvement to reduce

project failures, cost overruns, and reliability issues in software development programs.

Improved software engineering leadership approaches for life cycle development may

result from the identification of process which foster successful project outcomes, process

which result in negative impacts, and process which require modification. The research

study focused on the theory of open system paradigm for leadership effectiveness to

investigate the environment, resources, and processes for effective software engineering.

Chapter 2 contains a review of the history of software engineering, software life cycle

methodologies, software process improvement, distributed software development,

leadership paradigms, and leadership capabilities.

www.manaraa.com

25

CHAPTER 2: REVIEW OF THE LITERATURE

Chapter 2 includes a review of literature relevant to the research study focusing

on leadership for software development programs. This qualitative grounded theory study

investigated the leadership processes for successful software development programs. The

data collected was reviewed to develop theory on leadership approaches and processes

for successful development initiatives. The review of the literature included discussion of

existing theory and methodology for leadership and software engineering.

 The chapter includes an overview of software engineering history and reviews

the topics of life cycle methodologies, process improvement, and distributed software

development. The chapter also includes an overview of leadership paradigms and

capabilities focusing on key roles, characteristics, and concepts contributing to effective

leadership. The leadership theories of transactional and transformational paradigms are

presented noting the previous research identifying key components and characteristics of

each paradigm. The purpose of this study was to investigate leadership approaches and

software development methodologies to determine processes which are successful,

processes which are negative impacts to performance, and processes which require

update to enhance program development initiatives.

Title Searches, Articles, Research Documents, and Journals

The literature review contains information from peer-reviewed journal articles,

scholarly books, theses, dissertations, professional websites, and governmental websites.

Searches were conducted for information relevant to the research topic using the online

databases EBSCOhost, ProQuest, Gale Power Search, ABI/INFORM, ACM Digital

Library, Best Practices Benchmarking Reports Repository, Business Insights, Emerald,

www.manaraa.com

26

SAGE, Faulkner’s Advisory on Computers and Communications Technologies, and

IEEE Computer Society Digital Library. Database keyword searches included software

engineering, distributed teams, distributed software development, software development,

leadership development, leadership methodology, software methodology, leadership

processes, transactional leadership, transformational leadership, process improvement,

software life cycle, and software risk.

The database searches resulted in abundant literary sources related to software

engineering leadership as well as additional topics and sources to investigate. The review

of scholarly books, theses, dissertations, professional websites, and governmental

websites provided background information on software engineering, process

improvement, and additional sources for investigation. Local public libraries and

databases were used to investigate additional sources and obtain scholarly books for

review. The database and library searches produced hundreds of documents for review

and evaluation. Documents were reviewed for applicability and relevance to the research

study on software engineering leadership.

History of Software Engineering

In the 1950s, software development focused on developing programs for large

mainframe systems (Boehm, 2006). Computer equipment and processing time were

expensive, requiring programmer review and desk check of coding algorithms prior to

use on the computer system (Boehm). In this era, software development concentrated on

coding machine instructions for the computer to interpret to obtain desired results

(Boehm). Specialized individuals with backgrounds in physics or mathematics developed

www.manaraa.com

27

computer programs but did not apply engineering principles to code development

(Boehm; Yang & Mei, 2006).

Organizations began to realize it was easier to change software than hardware and

programming became a process of code and fix until the desired solution set was realized

(Boehm, 2006). As programs became more complex, the process of code and fix resulted

in reduced quality and reliability and often increased cost (Boehm). This approach led to

the software crisis of the 1960s and identified the need for a disciplined approach to

software programming (Pressman, 2010; Sommerville, 2007).

Prior to the 1960s, the term programming represented the process of developing

computer or machine code for use in computer systems (Wirth, 2008). As the complexity

of computer components increased, the complexity of programming increased resulting

in the emergence of concepts for a structured approach to programming (Pressman, 2010;

Sommerville, 2007). The term software engineering was introduced after a North Atlantic

Treaty Organization (NATO) conference, “referring to the highly disciplined, systematic

approach to software development and maintenance” (Wirth, p. 32). The conference

highlighted the problems of designing and developing complex computer systems

(Wirth). The emergence of software engineering was a result of the realization that better

methodologies, processes, and tools were required to develop software and combat the

growing software crisis (Sommerville; Wirth).

In the 1970s, the emphasis for software engineering was on developing structured

approaches and languages for completing complex software tasks (Boehm, 2006).

Software engineering began to focus on improving techniques through formalized

methods which emphasized requirement development and design analysis before

www.manaraa.com

28

initiating software coding (Boehm). The concept of structured programming began to

gain acceptance and led to the development of operating systems and tools to support the

structured software engineering programming environment (Wirth, 2008).

With the introduction of microcomputers in 1975, computers became affordable

for business and home use (Boehm, 2006). Before this time, the majority of computers

were mainframe computers used in large organizations and universities (Boehm). The

microcomputer provided resources available to all individuals (Yang & Mei, 2006).

With this growth in the computer market, the demand for efficient software

programs increased (Yang & Mei, 2006). The field of software engineering became

critical to the development of applications across multiple disciplines and levels of

complexity (Mahoney, 2008). As the requirements increased so did the complexity of

software systems and the need for processes to assist in the development life cycle

continued to grow (Mahoney).

The 1980s continued to refine the best practices and software engineering began

to focus on improvement in productivity and scalability (Boehm, 2006). The demand for

processes, tools, and techniques to support the disciple of software engineering continued

to evolve (Boehm). Structured methods and processes began to emerge as the catalyst for

improving productivity (Boehm). Software processes began to emerge focusing on

developing modular components for reuse in other applications to reduce cost and

increase productivity (Boehm). The introduction of structured life cycle models and

programming languages gave rise to a new paradigm centered on structured methods and

processes (Mahoney, 2008).

www.manaraa.com

29

In the 1990s structured methodologies, life cycle models, and process models

began to emerge as the standards for software development (Boehm, 2006; Ebert, 2008;

Sen & Zheng, 2007). The growth in computer resources resulted in a demand for readily

available software solutions to match the growth in computing power (Boehm). Software

became a critical component of company success with increasing demands for

development and delivery of solutions to the consumer (Boehm).

The field of software engineering became a discipline characterized by increasing

demands, work performed under time pressure, and reduction in code quality (Wirth,

2008). The resulting software represented inefficient code resulting in reduced quality

and performance (Boehm, 2006). The need for processes throughout the software life

cycle emerged as the solution to combat reduction in quality, reliability, and

maintainability issues (Boehm; Ebert, 2008). In this framework, the software industry

began to focus on engineering software through processes instead of developing software

to meet market demands (Ebert; Wirth).

Since 2000, the field of software engineering has realized the need to foster

continual improvement through the application of best practices and processes for

software development (Boehm, 2006). The integration of people, tools, and processes

fosters increased technology introduction (Ebert, 2008). In this framework, software

engineering remains focused on continual process improvement as the standard for

development programs (Ebert). Software engineering continues to evolve as a field

focused on developing quality products using software life cycle models, techniques, and

processes (Pressman, 2010; Sommerville, 2007).

www.manaraa.com

30

The application of processes continues to be a critical component for the field of

software engineering (Sommerville, 2007). Although the availability of processes,

methodologies, and life cycle models for software development continues to increase, the

discipline of software engineering has not realized a substantial reduction in program

failure rates (Cerpa & Verner, 2009; Dalcher & Benediktsson, 2006; Gottesdiener, 2008;

Horn, 2009; Mizell & Malone, 2007; Mukherjee, 2008; Pino et al., 2008; Sommerville;

The Standish Group, 2009; Xu & Brinkkemper, 2007). The Standish Group has been

conducting research on software project success rates since 1994 (Johnson, Boucher,

Connors, & Robinson, 2001). Although some improvements were realized through 2006,

the 2009 research revealed failure rates are again continuing to rise emphasizing the need

for identification of improved processes in software engineering (The Standish Group).

Software Life Cycle Methodologies

The complex and evolving nature of software systems (Elfatatry, 2007; Hadar &

Leron, 2008) requires software engineering methodologies remain agile and adaptable to

meet requirements (Sommerville, 2007). Whereas software engineering incorporates a

systematic and disciplined approach to software development, the processes must be

adaptable to meet the diverse set of applications (Pressman, 2010). Software life cycle

methodologies provide a framework for software practices, techniques, actions, and

management in an integrated model (Harris, Aebischer, & Klaus, 2007; Peslak,

Subramanian, & Clayton, 2008; Pressman).

Software methodologies provide a basis for each phase of software engineering

while allowing flexibility in the application and flow of processes within the structure

(Harris et al., 2007; Peslak et al., 2008; Pressman, 2010). “The skill set focusing on the

www.manaraa.com

31

life cycle of software engineering projects is critical to both understanding and practising

[sic] sound development and management” (Benediktsson, Dalcher, & Thorbergsson,

2006, p. 87). The software life cycle model provides the engineering methodology for

converting requirements into implemented software applications (Sen & Zheng, 2007).

Methods and approaches to the software engineering life cycle include waterfall

development, model driven development, and agile development (Elfatatry, 2007; Peslak

et al.; Pressman).

Waterfall Development

The waterfall model was introduced in the 1970s as a methodology for

performing software development to meet government contracting requirements (Harris

et al., 2007; Larman & Basili, 2003). The model provided a sequence of phases for

software development focusing on design, development, and requirement analysis (Harris

et al.; Larman & Basili). The waterfall model provided a framework for conducting

software engineering activities in development stages (Harris et al.; Sen & Zheng, 2007).

Each stage of the model focused on an individual piece of the development life cycle

such as design, code, implementation, or testing (Harris et al.; Sen & Zheng). As each

stage is completed the focus shifts to the next phase of development (Harris et al.; Sen &

Zheng).

In the waterfall method, the approach to software development became structured

and centered on completing individual milestones prior to full project completion (Harris

et al., 2007; Sommerville, 2007). This model was originally interpreted to represent a

strict sequence of phases in a specific order for the development life cycle (Harris et al.;

Sommerville). As processes began to evolve, the waterfall model became the basis for

www.manaraa.com

32

other variations of the phased development approach to software (Guntamukkala, Wen,

& Tarn, 2006; Rajlich, 2006).

Research revealed improvements could be realized in the methodology if the

phases overlapped for implementation in smaller increments as opposed to completing an

entire phase for each program (Guntamukkala et al., 2006; Rajlich, 2006). This

realization resulted in modifications to the waterfall paradigm (Aken, 2008; Pressman,

2010). Variations of the waterfall model include the V system model, incremental

models, evolutionary models, and spiral models (Aken; Pressman). Each of these models

provided a framework for focusing on phased development during the life cycle for

software development (Aken; Pressman).

 Evolutionary models provided a life cycle methodology fostering development of

software in stages with the goal of providing early products for assessment and

evaluation (Boehm, 1988; Pressman, 2010). Products are incrementally evaluated and

evolved to meet end user requirements (Boehm; Pressman). In this approach, an

increment of the operational product is developed and provided for evaluation (Boehm;

Pressman). The feedback obtained is used to modify and improve the product by

repeating the development stages to evolve the product to the final implementation

(Boehm; Pressman). The objective of evolutionary models is to develop quality software

using flexible and iterative approaches (Boehm; Pressman). Incremental and spiral

models are two specific instantiations of an evolutionary model (Boehm; Pressman).

In iterative or incremental development, the project is broken down into a series

of activities each represented by the waterfall model (Siddiqui, Hussain, & Hussain,

2006). This approach allows the software development team to perform successive

www.manaraa.com

33

refinements during the life cycle to develop and deliver the product (Siddiqui et al.). The

“iterative approach enables the customer to evaluate the software increment regularly,

provide necessary feedback to the software team, and influence the process adaptations

that are made to accommodate the feedback” (Pressman, 2010, p. 69). Incremental

development models provide benefits to program leadership over traditional waterfall

approaches including early problem resolution, reduced rework, improved reliability,

early return on investment, and improved user satisfaction (Benediktsson et al., 2006).

The spiral software development model follows the phased approach of the

waterfall model with an additional emphasis on risk analysis and mitigation (Boehm,

1988; Hashmi & Baik, 2007). In the spiral model, individual increments of functionality

are implemented following the defined stages of development (Siddiqui et al., 2006). The

model continues to refine increments, adding functionality until the development of the

product is complete (Siddiqui et al.). Each spiral iteration results in more functionality for

the software system (Siddiqui et al.).

The risk component of the spiral model focuses on evaluating the impacts at each

increment of the spiral to revise completion estimates and to determine if the project

should proceed (Aken, 2008; Rajlich, 2006). Early research on the implementation of the

spiral model reported software team productivity increases of at least 50% over the

traditional waterfall model (Boehm, 1988). Spiral model development approaches

increased the focus on software risk management and the integration of risk planning into

the software phases (Hashmi & Baik, 2007).

“The Spiral Model proposes a cyclic approach for incrementally growing a

system’s degree of definition, design, and implementation while decreasing its degree of

www.manaraa.com

34

risk” (Chatterjee, 2008, p. 613). The integration of risk planning into the life cycle model

provided an additional component for enhancing the quality and efficiency of

development efforts (Boehm, 1988). The variations of the waterfall model provided a

phased approach to development through defined finite stages of activities

(Guntamukkala et al., 2006).

Model Driven Development

Software development programs are often viewed as wasteful activities (El Emam

& Koru, 2008; Nevo & Wade, 2007; Xu & Brinkkemper, 2007). Projects are canceled,

developed code is not used, and applications are not portable to other systems (El Emam

& Koru; Nevo & Wade; Xu & Brinkkemper). A proposed solution to these software

issues is to embrace a development paradigm incorporating a level of abstraction above

the code level to enhance the flexibility and reusability of developed applications

(Edwards, 2003). This level of abstraction is achieved through the implementation of a

model driven life cycle for software development (Benediktsson et al., 2006). In model

driven development, models define and document the system product at each stage of

system development (Pressman, 2010).

Models emphasize developing individual components for integration into a final

system (Pressman, 2010). This development of visual representations of the system

supports integration activities required for development of large distributed systems

(Balasubramanian, Gokhale, Lin, Ahang, & Gray, 2006). “The model driven approach to

system development facilitates better understanding of system requirements capture,

design, construction, and generation” (Gorry, 2008, p. 87). Model driven development

was an appropriate method of development for many information system applications

www.manaraa.com

35

because the abstraction and refinement of model layers supported the increasing size and

complexity of distributed software programs (Guntamukkala et al., 2006). The model

driven approach fostered a paradigm in which the models are as important as the artifacts

developed, the problem and solution domain are developed at different levels of

abstraction, and the levels are linked by defining relationships between models (Alam,

Hafner, & Breu, 2008).

In 2001, the Object Management Group introduced a software development

approached based on the principles of domain engineering for model driven development

of software systems (Haustein & Pleumann, 2005). Model Driven Architecture (MDA)

provided a set of guidelines for modeling system specifications, developing software

code from modeling diagrams, and implementing models throughout the software life

cycle (Edwards, 2003). This methodology implemented platform models independent of

the specific technologies or platforms for implementation (Haustein & Pleumann).

Platform specific models are derived and refined from the independent model until the

system is appropriately defined before code implementation (Edwards).

Throughout the life cycle, the implemented MDA models support the software

planning, development, enhancement, and maintenance of the system (Edwards, 2003).

The MDA approach allows the software engineering team to focus on individual points in

the development process by separating the details from the implementation (Gorry,

2008). MDA provides a model driven life cycle approach which is independent of the

hardware application, supports flexibility, enables prototyping, and encourages reuse

(Edwards).

www.manaraa.com

36

In the 1990s, the collaborative work of object oriented analysis and design

methodology experts produced the Unified Modeling Language (UML) (Pressman,

2010). UML combined aspects of each of the object oriented and structured design

methodologies (Pressman). UML provided semi-formal graphical diagrams for software

engineering process with a means for defining and modeling object oriented systems

(Aoumeur, 2008; Pressman).

UML has been considered by some software engineers to be the standard

modeling language for object oriented information systems analysis and design (Jakimi &

Elkoutbi, 2009; Rasulzadeh, 2008). “A major segment of the software engineering

community has adopted the Unified Modeling Language (UML) as the preferred method

for representing analysis and design models” (Pressman, 2010, p. 89). Some researchers

believe UML does not incorporate formal methods critical to improved and automated

software engineering processes (Benediktsson et al., 2006; Rasulzadeh). The choice of

which approach to use is dependent upon the application and organizational strategy

(Guntamukkala et al., 2006; Pozgaj et al., 2007).

Agile Development

Final software products are successful if they provide the required functionality,

meet delivery schedules, and maintain budget requirements (Nasution & Weistroffer,

2009). The traditional waterfall based development approaches have been viewed as

contributing to the perceived failure of software programs due to the structured, rigid, and

segmented phases (Benediktsson et al., 2006; Rajlich, 2006). Projects following these life

cycle models are often viewed as exceeding cost, exceeding schedule, and failing to

deliver required functionality (Nasution & Weistroffer).

www.manaraa.com

37

Agile development methods focused on improving performance through

providing methods for quick response to changing environments and requirements (Aken,

2008). Agile development methods focus on short development iterations to produce

executable software with partial functionality (Pozgaj et al., 2007). The product end user

evaluates the partial product and provides feedback for use in the next iteration

(Clutterbuck, Rowlands, & Seamons, 2009). User requirements are refined and updated

to deliver a product that provides the desired functionality and meets user requirements

(Clutterbuck et al.).

According to Keston (2008), agile development provides software engineers with

flexibility in work execution approach. Agile moves away from traditional structured

methodologies to embrace an approach focused on product evaluation instead of

measuring documentation development or milestones achieved (Clutterbuck et al., 2009).

In the agile philosophy, measured and observed iteration product quality defines program

progress (Keston). In this approach, the software engineering team refines requirements

and defines system functionality in increments involving stakeholders at each phase

(Calabrese, 2008; Clutterbuck et al.). This methodology fosters flexibility and

adaptability in the software life cycle approach (Calabrese; Clutterbuck et al.).

The agile development approach does not focus on one set of practices or

processes but rather on the shared principles for the development life cycle (Clutterbuck

et al., 2009). The key principles in the agile development methodology are iterative

development, small steps, customer involvement, communication emphasis, small teams,

pragmatic development, and testing (Keston, 2008). Agile life cycle processes embrace

www.manaraa.com

38

these philosophies to streamline the process over traditional formal methodologies (Aken,

2008).

An advantage of the agile method over the traditional waterfall model is the

frequent delivery of executable software systems for evaluation (Clutterbuck et al., 2009;

Pozgaj et al., 2007). The agile method for software development supports the evolving

and dynamic technical environment associated with software development for

information systems (Nasution & Weistroffer, 2009). Research conducted by Kendall et

al. (2008) on scientific software development applications noted agile methods were

more effective than traditional formalized approaches.

Agile methods provided greater flexibility, improved user input, and increased

product quality (Calabrese, 2008). Some software engineering practitioners believe agile

methods are difficult to apply to large projects consisting of diverse teams with fixed

costs and schedules (Douglas, 2006; Guntamukkala et al., 2006). These programs tend to

align with the traditional methodologies and approaches to program development

(Douglas; Guntamukkala et al.).

Although numerous life cycle methodologies exist, no method provides a solution

applicable to every application (Benediktsson et al., 2006; Eldai, Hassan, Ali, & Raviraja,

2008; Guntamukkala et al., 2006). The appropriate method depends on many factors

including the type of development, team structure, project complexity, and performance

parameters (Benediktsson et al.; Eldai et al.; Guntamukkala et al.). “Most complex

systems involve a mix of technologies. We have a wealth of competing architectural

platforms. Experienced designers must make trade-offs and select from a variety of

appropriate technologies for solving the task at hand” (Wirfs-Brock, 2008, p. 30).

www.manaraa.com

39

Model driven methodologies are considered effective for large, integrated IT

systems but are often considered inappropriate for real-time system applications (Gorry,

2008). Although model driven development provides a method for refining requirements

and design independent of the target platforms, no specific approach to defining

transitions between model layers exists (Edwards, 2003). Gorry noted the lack of

transition definition as a drawback for real-time, embedded, safety-critical systems. In

this type of development the hardware, interfaces, and platform must be an integral

component of the software development process (Edwards; Gorry). MDA provides

abstractions above the hardware and interface level needed for real-time, safety critical

application development (Gorry).

Selecting and implementing a life cycle methodology is only part of the activity

for software engineering (Cusumano, 2008; Erdogmus, 2008). Processes must be

implemented at each stage of the life cycle to support program completion (Cusumano;

Erdogmus). Process improvement approaches are key components of software

development program success and are essential to software engineering life cycle and

development methodologies (Agrawal & Chari, 2007; Miller, 2006).

Software Process Improvement

According to Boehm and Valerdi (2008), the software field is changing and

refining through the introduction of new methods, components, languages, models, and

concepts. Software engineering programs strive to increase productivity and quality while

providing the software applications required by a growing technical society (Pressman,

2010; Sommerville, 2007). “Over the last two decades, the software engineering

community has expressed special interest in software process improvement (SPI) in an

www.manaraa.com

40

effort to increase software product quality, as well as the productivity of software

development” (Pino et al., 2008, p. 237). As observed by Stephenson and Sage (2007),

remaining competitive and current in the technical marketplace requires continual process

improvement.

Glass (2008) noted the difficulty in determining the current state of software

engineering practice due to the diversity in software engineering. The software field

consists of numerous system sizes, types, and objectives (Glass). In a field of such

diversity, identifying one best practice, methodology, or process is not feasible

(Benediktsson et al., 2006; Subramanian, Klein, Jiang, & Chan, 2009). The very nature of

software engineering requires continual investigation and improvement to maintain pace

with the state of software practice (Glass).

“Our biggest challenges are to figure out how to selectively prune the parts of the

software engineering experience base that become less relevant, and to conserve and

build on the parts with lasting value for the future” (Boehm & Valerdi, 2008, p. 80). To

meet this challenge, software engineering organizations implemented process

improvement initiatives (Agrawal & Chari, 2007; Miller, 2006). The most popular of

these initiatives included the Carnegie Mellon University maturity models (Carnegie

Mellon University Software Engineering Institute [CMU/SEI], 2006), International

Organization for Standardization (ISO) initiatives (McManus & Wood-Harper, 2007a),

and Six-Sigma (Boynton, 2007) approaches.

Capability Maturity Model (CMM)

The CMM provided an approach for understanding and analyzing the capability

maturity of applied processes within an organization (CMU/SEI, 2006). CMM was

www.manaraa.com

41

developed with the goal of helping organizations improve process initiatives (Jianguo et

al., 2008). CMM assisted organizations in determining current maturity level, identifying

issues critical to process improvement, defining the software process, and implementing a

software process improvement program (Galin & Avrahami, 2006).

The CMM provided “five evolutionary levels: (1) initial, (2) repeatable, (3)

defined, (4) managed, and (5) optimizing” (Ramasubbu, Mithas, Krishan, & Kemerer,

2008, p. 439). As organizations move up the maturity levels, the effectiveness and control

of the software processes are improved (McManus & Wood-Harper, 2007b). The

maturity levels for CMM provide a framework and methodology for continual process

improvement (McManus & Wood-Harper, 2007a). The goals at each maturity level

provide the method for establishing maturity and increasing process capability within the

organization (McManus & Wood-Harper, 2007a).

The CMM provided a framework for assessing the maturity of the development

stages of the organization for definition, implementation, measurement, control, and

improvement (Jianguo et al., 2008). The implementation of CMM focused on continual

process improvement for the stages of software development (McManus & Wood-

Harper, 2007b). As organizations move through the model levels, processes applied

during the life cycle were further refined (McManus & Wood-Harper).

Along with the refinement of processes, the model emphasized continual process

improvement (Jianguo et al., 2008). Progressing through the maturity levels to level five

did not indicate the final processes had been achieved (Jianguo et al.; McManus &

Wood-Harper, 2007b). Organizations improved efficiency and productivity through

www.manaraa.com

42

continual process improvement within the CMM framework (Jianguo et al.; McManus &

Wood-Harper).

Research studies have revealed when organizations achieve high maturity levels,

effort is reduced, quality is increased, and productivity is enhanced (Agrawal & Chari,

2007). Research conducted by Galin and Avrahami (2006) indicated CMM programs

consistently improved performance in the software development metric areas of

productivity, error density, error detection effectiveness, cycle time for completion,

percentage of rework required, schedule fidelity, and return on investment. In conducting

research on software review quality, Mishra and Mishra (2008) found implementing

CMM processes resulted in a decrease in review time and improved resource utilization.

The SEI continues to improve the guidelines and framework for software

engineering (Jianguo et al., 2008). The success of CMM for process improvement led to

the development of additional models for other system areas (CMU/SEI, 2006). The

Capability Maturity Model Integration (CMMI) superseded the CMM for system process

improvement (CMU/SEI). CMMI provides a framework for total system engineering and

the CMM is applicable in the general theoretical domain for software engineering

(CMU/SEI).

Capability Maturity Model Integrated (CMMI)

The CMM success led to the development of models for other disciplines such as

software acquisition, system engineering, and integrated product development (Kneuper,

2009). As these models were applied within organizations, problems with implementing

and managing different models became apparent (Kneuper). Organizations desired one

process improvement model for use in multiple focus areas (CMU/SEI, 2006). The

www.manaraa.com

43

CMMI was developed by the SEI to address the problem of implementing multiple

independent models (CMU/SEI).

CMMI combined various independent models for software, systems engineering,

and integrated product development into a single improvement framework (Kneuper,

2009). “The combination of these models into a single improvement framework was

intended for use by organizations in their pursuit of enterprise-wide process

improvement” (CMU/SEI, 2006, p. 6). The CMMI provided guidelines for process

improvement to define the artifacts and activities required across multiple organizational

disciplines (CMU/SEI; Kneuper).

Although CMM and CMMI provided a framework for process improvement,

some software engineering experts believe the models are overly bureaucratic and

concentrate on the development of processes without considering factors such as budget,

tools, and personnel who also contribute to program success (Probert et al., 2007).

Process improvement initiatives are not limited to CMM and CMMI approaches (Persse,

2006). Organizations not embracing the CMM and CMMI methodologies can implement

standards from the ISO or Six-Sigma initiatives for process improvement (Persse).

International Organization for Standardization (ISO)

The ISO developed quality assurance standards applicable to any business

enterprise (Persse, 2006). The ISO 9000 standards provided a framework for business

processes focusing on quality product development (McManus & Wood-Harper, 2007a).

The ISO 9001 series for software engineering are “detailed standards, which covers

design, development, production, installation, and servicing” (McManus & Wood-

Harper, p. 320). Applications with a significant design aspect, such as software

www.manaraa.com

44

engineering applications, implement the ISO 9001 framework for process improvement

(Persse). Companies implementing the ISO framework have completed an accreditation

process verifying the standards are understood, documented, and implemented within the

organization (McManus & Wood-Harper).

The ISO standards provided customers and end users with confidence that

implemented processes for designing, developing, and managing software quality are

effective (Persse, 2006). The software engineering industry has not fully embraced the

ISO paradigm as an acceptable process improvement initiative for development

(McManus & Wood-Harper, 2007a). The ISO 9000 series originated as a set of standards

in the manufacturing industry, which embody generic process and practices (McManus &

Wood-Harper). This generic focus and background in manufacturing resulted in many

software engineering practitioners failure to embrace these quality standards for process

improvement initiatives (McManus & Wood-Harper).

The International Electrotechnical Commission (IEC) and ISO jointly developed

ISO/IEC 15505 for the assessment of technical application processes (Al-Qutaish & Al-

Sarayreh, 2008; International Organization for Standardization [ISO], 2004b). This

standard established an international standard in the area of maturity models (Al-Qutaish

& Al-Sarayreh; ISO). The model framework focused on the software business areas of

organization, management, engineering, acquisition supply, support, and operations (Al-

Qutaish & Al-Sarayreh).

The ISO/IEC 15504 model defined six process capability levels of optimizing,

predictable, established, managed, performed, and incomplete (International Organization

for Standardization [ISO], 2004a). Technical organizations implement ISO/IEC 15504 to

www.manaraa.com

45

enable process improvement initiatives (Al-Qutaish & Al-Sarayreh, 2008; ISO). The

ISO/IEC model provided the methodology for assessing an organizations capability to

deliver products at each defined level of maturity (ISO).

Six-Sigma

Six-sigma is a business strategy implemented to improve the proficiency,

profitability, quality, and efficiency of business processes (Persse, 2006). In six-sigma

environments, the focus is on customers, processes, and employees to achieve improved

levels of success (Persse). In the business environment, six-sigma techniques are used to

develop and implement new applications to support improvement across the life cycle

(Goztas, Baytekin, & Kamanlioglu, 2009). “Six sigma in essence is a management policy

built upon data and facts where the main focus is at customer oriented operation,

excellence and process management” (Goztas et al., p. 48). The six-sigma methodology

provided a means for measuring quality and performance through process control

(Boynton, 2007).

The six-sigma approach provided two methodologies to implement change

(Boynton, 2007). The DMAIC model is implemented for existing process modification

and the DMADV is implemented for new process or product initiatives (Boynton; Goztas

et al., 2009). The DMAIC methodology focuses on defining what needs to be improved,

measuring current approaches, analyzing current processes, developing an improvement

plan, improving current processes, and repeating the process (Boynton). The DMADV

model provides five phases with the final two phases emphasizing the introduction of

new processes (Boynton). The five phases in this model define goals, measure customer

www.manaraa.com

46

requirements, analyze the process, design process improvements, and verify performance

to meet customer requirements (Boynton).

The structured framework provided by the six-sigma methodology enables a

method for effective process execution (Persse, 2006). Each of the phases focuses on

individual aspects of a business process with the goal of improving efficiency, quality,

and productivity (Keller, Marose, & Schussler, 2009). The concepts of six-sigma assist

organizational leadership in developing a culture of continual improvement (Goztas et al.,

2009). The six-sigma philosophy is applicable to business processes and the tenets of six-

sigma are applicable to process improvement initiatives for the field of software

engineering (Boynton, 2007).

Shenvi (2008) conducted research on applying the six-sigma methodology to

software development process in an electronics organization. The organization researched

concentrated on development of embedded software intensive systems for consumer use

(Shenvi). Shenvi observed the satisfaction of the consumer was critical to continued

organizational success. The organization studied applied the concepts of six-sigma to the

software engineering processes for product design and development (Shenvi). The study

indicated well planned applications of the six-sigma methodology result in improved

requirement management, reduction in communication issues, reduced rework, and

improved proficiency (Shenvi).

Each of the methodologies presented provides a unique focus and implementation

approach (Persse, 2006). Each methodology provides a framework for process

improvement initiatives in business environments (CMU/SEI, 2006; Goztas et al., 2009;

ISO, 2004a; Persse). For software engineering, the continual challenges of designing and

www.manaraa.com

47

developing complex, embedded, software intensive systems requires the continual

improvement and evaluation of processes for software engineering (Agrawal & Chari,

2007; Basili & Zelkowitz, 2007). The instantiation of a process improvement initiative

coupled with an applied life cycle development methodology fosters an environment of

increased performance, proficiency, reliability, quality, and successful software

development efforts (Kneuper, 2009; Mishra & Mishra, 2008; Persse).

Distributed Software Development

Resources, information availability, and knowledge development are enhanced

through the continued advances in computer technology, networking systems, and

interface applications (Awazu et al., 2009; Neumann, 2008). Software development

organizations implement activities through experts, data, information, and knowledge in

the local and global environments (Neumann; Peppard, Ward, & Daniel, 2007).

Distributed development activities provide the opportunity to enhance information

sharing and team collaboration for improved product success (Bernstein & Haas, 2008).

Distributed software development has emerged as a viable solution to the problems of

“skill set availability, acquisitions, government restrictions, increased code size, cost and

complexity” (Bird, Nagappan, Devanbu, Gall, & Murphy, 2009, p. 85).

The advances in technology, computer hardware, and networking capabilities

require larger and more complex software system development efforts (Hadar & Leron,

2008; Kirova et al., 2008; Schneidewind, 2007). In this environment, many organizations

perform software engineering activities implementing locally and globally distributed

teams of experts collaborating throughout the development life cycle (Hadar et al., 2008).

The growth in availability and functionality of computer applications and networking

www.manaraa.com

48

capabilities has resulted in increased demand for complex and innovative software

systems to meet consumer demands (Hinchey et al., 2008). To remain current and

competitive in the global marketplace, software engineering teams must work in a

collaborative, distributed environment to deliver software applications to meet consumer

quality, reliability, and functionality demands (Brown & McDermid, 2008; Lee, Delone,

& Espinosa, 2006).

Communication and Collaboration in Distributed Teams

Hadar et al. (2008) defined collaboration as the focused and coordinated effort of

a collection of individuals with a shared understanding to develop a successful problem

solution. To support activities in the distributed, collaborative environment, software

teams implement processes, methods, and practices to develop a common approach and

philosophy for software development (Brown & McDermid, 2008). Research has been

performed to investigate the challenges of software engineering in the distributed

environment. Many of these studies emphasized the importance of developing and

applying effective processes for team collaboration and software development

(Bharadwaj & Saxena, 2006; Bird et al., 2009; Bose, 2008; Espinosa, Slaughter, Kraut, &

Hebsleb, 2007; Kotlarsky, Oshri, & Willcocks, 2007).

Bharadwaj and Saxena (2006) conducted a study to identify the communication

methods, tools, and processes for successful application in global software development

teams. The organizations investigated implemented a distributed team structure of

individuals across the organization and globe (Bharadwaj & Saxena). Although the

distributed structure provided teams with increased flexibility and responsiveness, the

communication and collaboration challenges were increased (Bharadwaj & Saxena).

www.manaraa.com

49

The study results revealed the key concept in assuring program success in the

distributed environment is to communicate knowledge and information to the

management team, project team, and stakeholders (Bharadwaj & Saxena, 2006).

Managing the communication processes for knowledge and information dissemination

contributed to team and project success (Bharadwaj & Saxena). The effective

management of communication and knowledge processes contributed to achieving the

goals of the program (Bharadwaj & Saxena).

Bird et al. (2009) observed distributed software development incorporates

additional challenges not presented in co-located teams such as inconsistent development

environments, delayed feedback, lack of trust, and restricted communication. These

factors not only affect team effectiveness, but also product quality (Bird et al.). The case

study conducted by Bird et al. focused on evaluation of the processes implemented for

distributed development teams and the influence on product quality.

The results of the Bird et al. (2009) study indicated product quality was not

influenced by the distributed environment provided effective processes and practices for

improved communication, coordination, and team cohesion were implemented. Effective

practices identified included communication, consistent tool implementation, product

ownership, common schedules, and organizational integration (Bird et al.). The study

results demonstrated the importance of developing, identifying, and applying effective

practices throughout the development life cycle (Bird et al.).

Kotlarsky et al. (2007) noted innovations in communication and networking have

increased the use of distributed software development teams, creating challenges for

leadership over co-located development initiatives. Distributed development projects are

www.manaraa.com

50

often large, complex activities requiring intensive communication and collaboration

(Kotlarsky et al.). The success of these initiatives often depends on the technical and

operational methodologies and processes implemented for communication and

collaboration (Kotlarsky et al.). Achieving success in the distributed environment

requires effective communication and collaboration (Bose, 2008; Espinosa et al., 2007).

Communication and collaboration are all influenced by the social interactions developed

by team members (Bird et al., 2009; Kotlarsky et al.; Lee et al., 2006).

The research by Kotlarsky et al. (2007) extended previous investigations on social

interactions for distributed development by focusing on investigating the “processes

through which social ties are created and renewed” (p. 10). The research results revealed

the application of processes for social interaction should consider the current stage of the

development team (Kotlarsky et al.). Different stages of development required different

processes and techniques to achieve improved social interaction (Kotlarsky et al.).

Although processes and techniques are available for implementation to increase team

interaction, no one process or technique works in every development phase (Kotlarsky et

al.). Distributed software team leadership must develop an integrated collection of

processes for communication and collaboration which are selectively applied to meet the

challenges of the specific team development phase (Kotlarsky et al.).

Formal and Informal Processes for Distributed Teams

“Large-scale software development requires a substantial amount of coordination

because software work is carried out simultaneously by many individuals and teams, and

then integrated into a single product” (Espinosa et al., 2007, p. 136). Development in this

integrated environment presents challenges for synchronizing and coordinating activities

www.manaraa.com

51

(Bird et al., 2009; Bose, 2008; Kotlarsky et al., 2007). The coordination challenges are

further complicated when the development team is distributed across the organization or

geographic locations (Bird et al.; Bose; Kotlarsky et al.). Problems and delays in software

programs can result from improper management of established software development

processes (Tesch et al., 2007). Determining the appropriate group of leadership and

development processes is essential to success in the distributed software development

environment (Espinosa et al.).

Espinosa et al. (2007) investigated the effectiveness of processes for distributed

software development from the perspective of leadership and team members. The

research study conducted interviews with team members and leadership in a distributed

software development organization (Espinosa et al.). The greatest problem identified by

study participants centered on coordination problems (Espinosa et al.). The coordination

problems were broken into the categories of technical, temporal, and process (Espinosa et

al.). For process coordination, 56% of the participants revealed problems in the effective

management of software development processes (Espinosa et al.).

The Espinosa et al. (2007) study further revealed the specific process problems

noted were based on individual perspectives. Only 41% of the technical staff noted

process coordination problems whereas 100% of managers noted some type of process

coordination issue (Espinosa et al.). The results revealed technical staff members were

more concerned about coordination problems whereas managers were more concerned

about managing software development processes (Espinosa et al.).

Software development teams in distributed environments can provide benefits

such as reduced development costs, improved flexibility, increased productivity, and

www.manaraa.com

52

shared best practices (Agerfalk & Fitzgerald, 2006; Bose, 2008). Software development

in the distributed environment provides additional challenges over collocated

development that must be addressed through the application of processes and procedures

(Cusumano, 2008; Monalisa et al., 2008). Distributed software development provides the

advantages of multiple locations, increased talent base, increased quality, and lower cost

(Bose). Through work distribution across different time zones, software development

activities could continue around the clock (Bose; Cusumano). Managing a distributed

team in this environment creates additional challenges resulting from the communication

difficulties, work culture differences, and conflicts in organizational methodologies

(Bose; Cusumano).

Bose (2008) conducted case study research to investigate the concepts in agile

software development which could be effectively applied to software development in the

distributed environment. The study investigated the solution strategies applied by 12

companies to overcome the challenges of distributed software development (Bose). In

each case, the goal of the organization was to increase efficiency by improving repeatable

processes (Bose).

The Bose (2008) study indicated a focus on processes for team selection,

knowledge management, communication, and environment was essential to successful

project outcomes. The most important observation noted “different solution strategies

work for different companies based on available resources, intended outcome, and work

culture” (Bose, p. 630). When focusing on improving distributed software development

no specific process or practice works in every situation or life cycle phase (Bose).

www.manaraa.com

53

Developing a comprehensive set of software engineering processes for selective

implementation can support improved project performance (Bose).

Lee et al. (2006) conducted research of 22 global software development teams to

analyze the key processes, inputs, and outputs implemented for program success. The

main process investigated focused on communication and coordination among team

members (Lee et al.). The results of the study by Lee et al. found “successful global

software teams applied common principles in deploying coping strategies to enhance

both flexibility and rigor in software development” (p. 38). The evaluation of the data

collected by Lee et al. during interviews resulted in three general principles present in

global software development.

The first principle noted in the Lee et al. (2006) study stressed the importance of

defining standardized processes at the start of a program. Establishing processes early

enables the team to make needed modifications more effectively and at a lower cost (Lee

et al.). The second principle noted distributed software teams would implement and adapt

the processes for specific tasks and will eliminate the ineffective processes (Lee et al.).

The final principle observed teams in the global environment require the establishment of

rigorous software development processes to meet the challenges of communication and

coordination (Lee et al.). The established processes provide the framework for continued

task execution without the need for coordination among all team members (Lee et al.).

Although agility and flexibility are trends in software development approaches,

the research by Lee et al. (2006) demonstrated flexibility must be combined with

discipline and rigor for process application to realize success in distributed software

development programs. The study noted teams without disciple and rigor in the process

www.manaraa.com

54

for the software development life cycle could become inefficient and ad hoc in the global

environment (Lee et al.). As noted in other studies (Bharadwaj & Saxena, 2006; Bird et

al., 2009; Kotlarsky et al., 2007), the distributed team tailored processes and techniques

to match specific applications and phases (Lee et al.).

Research on formal processes for distributed software development by Ramesh,

Cao, Mohan, and Xu (2006) revealed a mix of formal rigid methods and flexible

application resulted in successful programs. The dynamic business environment requires

software development organizations design and implement software intensive systems

more efficiently with a decreased time to market (Miller, 2006; Ramesh et al.). This

environment requires flexibility in processes, applications, and methodologies (Ramesh

et al.). Distributed development environments often achieve control through the

development and implementation of formal processes (Ramesh et al.).

Ramesh et al. (2006) conducted research of three organizations to identify the

effective application strategies for flexible software engineering processes. The research

focused on investigating processes to align with the agile methodologies of continual

analysis and improvement, knowledge sharing, improving communication, building trust,

and verifying processes (Ramesh et al.). In each organization, leadership encouraged

development processes that incorporated flexibility to support rapid development

(Ramesh et al.). These processes also required periodic analysis and verification to assure

the development process remained under control and disciplined (Ramesh et al.). The

results revealed a careful balance of agile methodologies and distributed formal

approaches foster improved communication, control, and trust across distributed teams

(Ramesh et al.).

www.manaraa.com

55

The studies in the literature on distributed software development provide evidence

for developing formal disciplined processes and providing flexible, agile processes

(Bharadwaj & Saxena, 2006; Bird et al., 2009; Bose, 2008; Espinosa et al., 2007;

Kotlarsky et al., 2007). Throughout the literature on distributed software development,

the common theme identified related to the concept of no single set of processes is

applicable to every application, environment, and approach (Agerfalk & Fitzgerald, 2006;

Bharadwaj & Saxena; Bird et al.; Ramesh et al., 2006). Achieving success in distributed

software development requires the development of a collection of processes selected and

tailored to match the specific application and development domain (Agerfalk &

Fitzgerald; Bharadwaj & Saxena; Bird et al.; Ramesh et al.). As observed by Agerfalk

and Fitzgerald in implementing processes for distributed software development,

leadership must realize no single best method or process is available for incorporation.

The important concept for leadership is the development of an integrated collection of

processes and methods for implementation and tailoring to match the specific

development effort, phase, project objective, and team composition (Agerfalk &

Fitzgerald; Bharadwaj & Saxena; Bird et al.; Ramesh et al.).

Software Program Failure Rates

The Standish Group (2009) conducted independent research and analysis of IT

project performance to evaluate the status and trends for software development programs.

The study categorized projects as successful, failed, or challenged:

Successful: The project is completed on time and on budget, with all features and

functions originally specified. Challenged: The project is completed and

operational, but over budget, late, and with fewer features and functions than

www.manaraa.com

56

initially specified. Failed: The project is canceled before completion, or never

implemented. (Johnson et al., 2001, p. 1)

The initial study, conducted in 1994, reported 16% of projects successful, 31% of

projects failed, and 53% of projects challenged (Johnson et al.). The Standish Group

repeated the study every 2 to 3 years with each report revealing gradual improvement

through 2006 (Rubinstein, 2007).

In 2004, the Standish Group report revealed marked improvements over the 1994

results with 18% of projects successful, 29% of projects failed, and 53% of projects

challenged (Boehm & Valerdi, 2008; Nevo & Wade, 2007). These improvements in

program success rates, and declines in failure rates continued in the 2006 study (Boehm

& Valerdi; Rubinstein, 2007). The 2006 Standish Group report revealed 35% of projects

successful, 19% of projects failed, and 46% of projects challenged (Boehm & Valerdi;

Rubinstein). These findings were an improvement over the initial 1994 study and the

2004 study results.

In 2009, the Standish Group study reported a reversal in the improvement trend

with a marked decline in software development program success. The study reported

32% of projects successful, 24% of projects failed, and 44% of projects challenged (The

Standish Group, 2009). These results revealed a significant decline in program success

rates and an increase in program failure rates (The Standish Group). The failure rates

were the highest reported in the last decade and indicated software development

programs and leadership need to investigate new methods, procedures, and practices to

improve the decline in successful software program rates and reverse the increase in

failure rates (The Standish Group).

www.manaraa.com

57

Leadership Paradigms

Software engineering is a complex, dynamic, and integrated activity which aligns

business initiatives with development strategies (Adams, 2008; Pfleeger & Atlee, 2010;

Sommerville, 2007) to produce software products characterized as “complex, changeable,

and invisible” (Probert et al., 2007, p. 810). The management of software engineering

teams in this environment requires effective leadership for organizational, product, and

process objectives (Colbert, Kristof-Brown, Bradley, & Barrick, 2008; Desouza, Awazu,

& Baloh, 2006). As observed by Erdogmus (2008), software development is an

intellectual, human centered effort requiring effective leadership.

Leadership is not the direction of individuals for task completion but rather the

effective application of leadership paradigms to motivate, support, inspire, and foster

achievement of individual, project, and organizational objectives (Ilies, Judge, &

Wagner, 2006; Northouse, 2010). Individuals demonstrate leadership when they are able

to assess the capability of the available staff, provide employee support, provide direction

when required, participate in team activities, and demonstrate enthusiasm for

organizational objectives (Northouse; Taylor, 2007). Transactional and transformational

leadership are two common paradigms often applied to software development initiatives.

Transactional Leadership

Transactional leadership focuses on building transactions or influential exchanges

between leaders and followers (Boseman, 2008). In this leadership style, the leader

provides rewards in exchange for effort, participation, productivity, and performance of

followers (Boseman). Transactional leaders foster and develop effective relationship with

employees to improve employee satisfaction and performance (Boerner, Eisenbeiss, &

www.manaraa.com

58

Griesser, 2007). In this environment, employees observe the dynamic between benefits

received and the quality of work performed (Boerner et al.). Transactional leaders define

and reward performance based on individual tasks and expected productivity (Boerner et

al.; Boseman).

Leaders in the transactional paradigm often provide rewards for positive

performance and manage by exception (Boerner et al., 2007). In this environment, the

leader and follower establish a strong bond and degree of trust (Boerner et al.). In this

paradigm, employees will only perform to the level rewarded and will not provide

additional effort (Boseman, 2008). In a transactional environment, individuals do not

establish a common bond with leadership and often do not identify with organizational

goals and objectives (Boerner et al.). The driving factor for individuals is to achieve

expected performance to obtain rewards (Boerner et al.).

Transformational Leadership

Transformational leaders go beyond the reward for performance methodology of

transactional leadership and attempt to engage all aspects of individual motivation

(Denning, 2007). Transformational leaders convey to followers the importance of the

individual to the organization by communicating the goals, objectives, and importance of

each contribution (Boseman, 2008). Transformational leaders inspire, motivate,

encourage, and generate enthusiasm for a common purpose (Denning; Northouse, 2010).

Organizations require skilled and effective leadership at all levels to ensure the

understanding and achievement of goals and objectives (Northouse, 2010). The

transformational leadership paradigm encourages creativity and innovation for

individuals, teams, and the organization (Boerner et al., 2007). Transformational leaders

www.manaraa.com

59

exhibit “courage self confidence, passion and energy, as well as strong interpersonal

skills, an ability to imagine different and better futures, an ability to communicate visions

and a willingness to take risks” (Taylor, 2007, p. 28).

Transformational leaders integrate technical and personal characteristics and traits

to encourage, innovate, and inspire individuals, teams, and organizations (Bass, 1999;

Northouse, 2010). Transformational leadership focuses on obtaining the maximum

potential from individuals through motivation, encouragement, and support (Tarabishy,

Solomon, Fernald, & Sashkin, 2005). For individuals “superior performance is possible

only through stimulating and motivating followers to higher levels of performance”

(Masood, Dani, Burns, & Backhouse, 2006, p. 942). Transformational leaders motivate

and encourage followers by exhibiting enthusiasm, communicating objectives,

articulating a clear vision, openly communicating, defining expectations, and providing

individualized support (Ilies et al., 2006; Masood et al.; Northouse).

For the transformational leader, innovation is critical to employee motivation,

creativity, and discoveries (Northouse, 2010). Leadership must encourage innovation and

support innovative processes and activities to foster creativity and performance

improvement (Miller, 2006). According to Miller, businesses must embrace innovation

and innovative leadership to survive in the competitive, global economy.

Transformational leadership incorporates innovation in team and organizational

objectives through the integration of processes, policies, and people (Masood et al., 2006;

Northouse).

Innovative leadership focuses on open idea exchange, improved capability

development, and knowledge sharing (Masood et al., 2006; Northouse, 2010).

www.manaraa.com

60

“Innovation requires people to think differently, and that thinking can be improved with

orderly facilitation” (Miller, 2006, p. 12). Transformational leadership provides the

framework for orderly facilitation of innovative thinking within the organization

(Northouse). A transformational leader “creates and articulates a vision…provides a role

model…provides individualized support…communicates high performance

expectations…encourages the acceptance of group goals…[and] provides intellectual

stimulation” (Boseman, 2008, p. 37-38). Transformational leaders inspire followers to

achieve greater performance and involvement by communicating objectives, increasing

trust, encouraging innovation, supporting growth, enabling learning opportunities,

fostering understanding, empowering individuals, and setting a positive example

(Boerner et al., 2007; Ilies et al., 2006).

Leadership Capabilities

Research conducted by El Emam and Koru (2008) on failed software programs,

revealed 28% of respondents believed lack of project management skills for software

programs resulted in the cancellation or failure of the project. The study also revealed

program failures and cancellation rates are influenced by “organizational maturity,

methodology, and project management experience” (El Emam & Koru, p. 89).

Leadership capabilities are critical to software engineering program success (Pressman,

2010). Developing and integrating key leadership qualities and approaches can foster

improved program performance (Cantor, 2002; Steeneken, 2009). “The long-term success

of a company is reliant on management systems that work to foster high-performance and

effectively prepare tomorrow’s managers and leaders” (Lindbom, 2007, p. 102).

www.manaraa.com

61

Project management for software engineering is a critical element in determining

project success (Cusumano, 2008). Woolridge et al. (2009) noted software program

failures are often the result of project management failure to define the software elements

for delivery and failure to identify the project problem domain. Software program success

is often measured through deviation in schedule, budget, and functionality (Subramanian

et al., 2009). Project managers must implement capabilities and processes to define,

monitor, and measure project success throughout the life cycle (Sommerville, 2007).

Focusing on project management for success, schedule, cost, and product perspectives

can assist management in meeting project goals and producing usable products

(Subramanian et al.).

Empowerment

In the complex, integrated, and dynamic environment for software development,

successful transformational leaders empower team members to meet goals and objectives

(Northouse, 2010). The competitive technical environment requires innovative leadership

techniques for effectively enabling employee capabilities and motivation (Cagle, 2007).

Empowered employees embrace task ownership, exercise self-discipline, and increase

efficiency through encouragement and motivation (Chan, Taylor, & Markham, 2008).

Empowerment encourages individuals to embrace ownership over the process and accept

responsibility for the outcome (Cagle). Leaders empower individuals through elimination

of bureaucratic boundaries, limitation of individual activities, and improvement of

capabilities (Cagle; Chan et al.).

Empowerment begins with executive leadership and extends to all levels of

leadership and individuals throughout the organization (Cagle, 2007). Empowerment

www.manaraa.com

62

provides the framework for implementing individual capabilities through knowledge and

motivation (Cagle). In the empowered organization, leaders coordinate activities, acquire

resources, plan activities, and coach individuals (Chan et al., 2008). Leaders provide the

environment to mentor, coach, train, and facilitate information sharing, self-direction, and

autonomy to foster individual growth and development (Chan et al.).

Leaders who embrace empowerment paradigms exchange traditional control and

supervision models for practices encouraging support, cooperation, and self-direction

(Cagle, 2007). Leaders support empowered employees through information sharing,

resource availability, and innovation (Cagle). Individuals are encouraged to embrace

innovation and creativity to develop knowledge and enable discovery (Chan et al., 2008).

Individuals are empowered and encouraged to be creative, take risks, and learn from

mistakes (Chan et al.). In this environment of empowerment and support; innovation,

creativity, productivity, and proficiency can flourish (Cagle; Chan et al.).

Communication/Collaboration

Communication and collaboration are essential characteristics of successful

software development teams (Mohtashami et al., 2006). Leadership for software

engineering initiatives must encourage open communication, provide a collaborative

environment, and effectively communicate goals and objectives (Bharadwaj & Saxena,

2006). In the software engineering environment, “better communication between

participants can mitigate the drawbacks of diversity by providing a common knowledge

base. Hence communication is vital for virtual communities that comprise software

developers from diverse backgrounds, in efficiently integrating their knowledge for

overall productivity” (Subramanian & Soh, 2008, p. 142).

www.manaraa.com

63

 Communication fosters collaboration, describes organizational tasks, articulates

the process, and provides the framework for leadership success (Nielsen, 2009). Leaders

interact with employees through communication and collaboration to achieve strategic

organizational objectives (Nielsen). Effective leadership communication transmits

complex ideas, motivates, inspires, and reinforces ideas (Denning, 2007).

Leaders articulate a clear vision, understand interactions, and stimulate creativity

through communication to enable achievement of strategic goals and objectives

(Denning, 2007; Nielsen, 2009). The research conducted by Nielsen revealed effective

leadership communication was essential for proper interpretation of tasks, learning the

vocabulary of the organization, defining reality, correctly interpreting employee

expectations, and developing alternative interpretations. As Denning noted, effective

leadership communication focuses on conveying the message, stimulating desire,

reinforcing with reason, and continuing the conversation to achieve success.

Risk Management

 Fully defined risk management approaches incorporate planning, awareness,

analysis, mitigation, and monitoring aspects (Dey, Kinch, & Ogunlana, 2007). In the

team or distributed environment, risk management should incorporate a focus on

effective team collaboration and management into the traditional risk phases

(Mohtashami et al., 2006). The most critical aspect for distributed software development

is effective management (Mohtashami et al.). In the distributed environment, leadership

must factor in the influences of distributed coordination and “define a layered risk

management plan to avoid dangers and pitfalls of lack of ownership and authority”

(Mohtashami et al., p. 25). This approach will lead to a comprehensive, integrated

www.manaraa.com

64

approach to risk management incorporating the unique components for complex and

distributed software engineering environments (Dey et al.; Mohtashami, et al.).

Traditional risk management approaches do not address the unique needs of

complex, iterative, and collaborative software development programs (Mohtashami et al.,

2006). “Collaborative software development involving multiple organizational units,

often spanning national, language, and cultural boundaries, raises new challenges and

risks that can derail software development projects even when traditional risk factors are

being controlled” (Mohtashami et al., p. 20). Leadership for software development

programs must incorporate the unique aspects of distributed development into the risk

management process (Dey et al., 2007). Research conducted by Mohtashami et al. noted

communication, culture, trust, and rigorous risk management are the critical factors in the

collaborative software environment. Development and maintenance of a successful risk

management program requires leadership to incorporate practices and processes to

address the critical factors for success (Dey et al.; Mohtashami et al.).

The research by Dey et al. (2007) further emphasized the importance of a

comprehensive risk management approach. The case study results revealed risk

management processes should be an integral component of the life cycle to address risk

in the local and distributed software development environment (Dey et al.). Dey et al.

observed “effective risk management in software development ensures successful

accomplishment of projects with customers’ satisfaction, functional achievement, and

overall better financial performance of the organizations” (p. 299).

Leadership for software engineering programs must implement a detailed risk

management approach for the software life cycle to address developmental, financial, and

www.manaraa.com

65

organizational risk areas (Dey et al., 2007; Mohtashami et al., 2006). “Managing risk

dynamically throughout the project phase will ensure user/customer/client involvement,

management commitment, clear specification and design, appropriate planning, realistic

expectations, competent and committed staff, and clear vision and objectives” (Dey et al.,

p. 299). Risk management should be a comprehensive program that integrates the risk

process into the collaborative environment (Mohtashami et al.).

Knowledge Management

Knowledge in the corporate world is a critical asset requiring effective

management to sustain competitive advantage (Mathew, 2008). Knowledge is used in the

software development environment for decision-making, problem solving, and task

completion (Mathew & Kavitha, 2008). Research conducted by Landaeta (2008) revealed

the performance and capabilities of a project team are increased through knowledge

transfer across the organization.

The creativity and complexity associated with software engineering requires

information and knowledge sharing to remain current, competitive, and successful

(Landaeta, 2008). Effective knowledge management by leadership is a key component of

organizational success and supports competitive advantage in the marketplace (Mathew

& Kavitha, 2008). According to Landaeta, knowledge provides the foundation and

opportunity to improve individual and organizational performance.

For software development organizations, knowledge management is critical to

fostering innovative product development, creative design, and continual process

improvement (Desouza et al., 2006). Knowledge is critical to the software development

life cycle and must be managed in all phases, processes, and practices (Landaeta, 2008).

www.manaraa.com

66

Leadership must provide team members in the software development environment a

robust knowledge development and management program to assure success for project

initiatives (Desouza et al.). Effective knowledge management programs collect

information on insights, best practices, expertise, and failures to develop a complete

knowledge base to promote knowledge reuse for current and future programs (Desouza et

al.).

When project teams lack program and organizational knowledge, the risk of not

meeting objectives, project cancellation, and program issues is increased (Mathew, 2008;

Mathew & Kavitha, 2008). Project leadership must understand the importance of

knowledge management and enact knowledge management techniques to collect and

disseminate knowledge across projects and the organization (Landaeta, 2008). Research

on effective knowledge management for software development reported the critical

capabilities for successful knowledge management programs were “strong leadership and

having a robust knowledge strategy in operation at all levels” (Desouza et al., 2006, p.

37). In a knowledge environment, project teams obtain the benefits of lessons learned,

experiences, and new knowledge development (Mathew & Kavitha). Leadership in

knowledge organizations must encourage both informal and formal processes for the

exchange and development of critical knowledge for program success (Mathew &

Kavitha).

Although knowledge transfer across projects provides positive influences on

performance and capabilities (Mathew, 2008), the research conducted by Landaeta (2008)

also revealed excessively high knowledge transfer initiatives resulted in negative

influences to project performance. Mathew and Kavitha (2008) observed knowledge flow

www.manaraa.com

67

should be frequent but at the proper quantity and quality to foster information sharing and

knowledge development. The challenge for leadership is to achieve a balance between

information starvation and information overload (Mathew & Kavitha). The key

components for organizational success are encapsulated in the leadership practices and

methodologies for knowledge development, collection, retention, and dissemination to

increase team knowledge and product quality (Fruchter, Swaminathan, Boraiah, &

Upadhyay, 2007).

Conclusion

A review of the history of software engineering revealed the complexity and

integrated nature of software development presented challenges for successful program

completion (Hadar & Leron, 2008; Kirova et al., 2008; Schneidewind, 2007). The

development of complex software programs required the use of better methodologies,

process, and tools to address the software crisis (Wirth, 2008). As technology and the

demand for software applications continued to expand, the need for improved processes

for the software engineering life cycle continued to grow (Mahoney, 2008). Although the

field of software engineering had developed numerous processes, methodologies, and life

cycle models for software development, program efforts have not realized a substantial

reduction in failure rates (Cerpa & Verner, 2009; Dalcher & Benediktsson, 2006;

Gottesdiener, 2008; Horn, 2009; Mizell & Malone, 2007; Mukherjee, 2008; Pino et al.,

2008; Sommerville, 2007; The Standish Group, 2009; Xu & Brinkkemper, 2007).

Software engineering is a complex, dynamic, and human centered effort requiring

effective leadership for organizational, product, and process objectives (Adams, 2008;

Erdogmus, 2008; Probert et al., 2007). Several research studies investigated the

www.manaraa.com

68

effectiveness of software processes (Agrawal & Chari, 2007; Douglas, 2006; Galin &

Avrahami, 2006; Gorry, 2008; Kendall et al., 2008; Shenvi, 2008) or leadership

characteristics (Bharadwaj & Saxena, 2006; Bird et al., 2009; Kotlarsky et al., 2007;

Nielsen, 2009). In the literature review, a gap exists in research on investigating the

effective integrated approach to software engineering. Studies focus on leadership aspects

(Dey et al., 2007; El Emam & Koru, 2008; Landaeta, 2008; Mathew & Kavitha, 2008;

Mohtashami et al., 2006; Subramanian & Soh, 2008) or methodology aspects (Bose,

2008; Espinosa et al., 2007; Lee et al., 2006; Ramesh et al., 2006) but no studies were

found investigating both leadership and process.

This qualitative grounded theory study focused on investigating the leadership

approaches and software processes in the open system framework to develop an

integrated theory. The primary research question 1 investigated the leadership attributes

and the secondary questions, research question 2 and research question 3, focused on

software processes. The research provided theory on leadership approaches from the

integrated perspective of environment and process.

Summary

The field of software engineering emerged in the 1960s as a result of the need for

better methodologies, processes, and tools to address the growing software crisis (Wirth,

2008). As the field of software engineering continued to grow through the 1970s, the

concepts of structured approaches to design and development became the standard for

formalized methods emphasizing design prior to implementation (Boehm, 2006). In the

1980s and 1990s, the software engineering field concentrated on developing and refining

best practices to improve productivity, reliability, and quality (Boehm). In 2000, the

www.manaraa.com

69

software engineering field embraced the concept of continual process improvement to

meet the demands of the complex and dynamic software development life cycle (Ebert,

2008). The software development industry realized the need for processes to increase

performance and quality throughout the software life cycle (Mahoney, 2008).

The integration of people, tools, and processes fostered continual process

improvement and technology development for software engineering (Pressman, 2010;

Sommerville, 2007). Software engineering continues to evolve through the

implementation and refinement of software life cycle models, techniques, and processes

(Pressman; Sommerville). Software life cycle models provide a framework for processes,

techniques, and management in a systematic and disciplined approach supporting

flexibility to address the unique and dynamic requirements of the software field

(Pressman). Methods and approaches to the software engineering life cycle include

waterfall development, model driven development, and agile development (Peslak et al.,

2008; Pressman).

The software engineering field is changing, growing, and expanding through the

introduction of new methods, components, languages, models, and concepts (Boehm &

Valerdi, 2008). Software engineering programs and leadership strive to increase

productivity and quality while remaining competitive in the technical marketplace

(Pressman, 2010; Sommerville, 2007). Software development is a complex, intellectual

effort requiring effective leadership for organizational, product, and process objectives

(Erdogmus, 2008). Effective leadership requires the application of paradigms to motivate,

support, inspire, and foster achievement of individual, project, and organizational

objectives (Northouse, 2010; Taylor, 2007).

www.manaraa.com

70

Chapter 2 presented a review of the research literature on software engineering

and software engineering leadership. Chapter 3 presents the methodology of the study

and will discuss the appropriateness of the selected methodology. Chapter 3 includes a

discussion of the population and sample, sampling methods, a description of the

interview instrument, data analysis methodology, reliability, and validity.

www.manaraa.com

71

CHAPTER 3: RESEARCH METHODS

The purpose of this qualitative grounded theory study was to investigate

leadership practices applied to the software development program life cycle to determine

which processes are effective, beneficial, and applicable to achieving successful program

outcomes. A qualitative study was appropriate to collect textual data from participants,

ask broad general questions, and analyze responses for themes in a subjective manner

(Bogdan & Biklen, 2007; Creswell, 2008; McMillan & Schumacher, 2006). This study

examined and developed theories on which leadership practices and processes facilitate

successful programs based on observations from software team leaders and team

members.

This study explored leadership approaches and software development

methodologies to determine the processes which are successful, those which are

considered negative impacts to performance, and those which should be updated to

enhance program development initiatives. Identification of effective and ineffective

processes may lead to continued process improvement to enhance the success rate for

software development programs. The identification of successful and unsuccessful

leadership approaches for software development activities may provide insight into

appropriate methods to integrate into the software process to foster improvement in

software leadership paradigms.

Chapter 3 provides a discussion of the selected research method and research

design. The appropriateness of the qualitative methodology and grounded theory design

is presented along with a discussion of why other methods would not meet the objectives

of the study. The study research questions, sampling frame, population, data collection

www.manaraa.com

72

approach, instrumentation, validity, reliability, and data analysis procedures is also

presented.

Research Method and Design Appropriateness

Software is an integral part of products for consumers, business, government, and

the military (Basili et al., 2008; King, 2007; Probert et al., 2007). Although software

programs continue to grow in complexity and criticality, the success rate for development

programs has not improved (Cerpa & Verner, 2009; Horn, 2009; The Standish Group,

2009). Research revealed failure rates for software programs are increasing whereas

success rates are decreasing (Rubinstein, 2007; The Standish Group). The software life

cycle depends on the implementation of development methodologies, process, and

leadership approaches for success (Agrawal & Chari, 2007; Sapienza, 2005; Tesch et al.,

2007). The study investigated the perceptions of software development leaders and team

members to identify the processes and approaches contributing to successful program

development.

The study implemented a qualitative grounded theory design to obtain

information on the perceptions, views, and opinions of software team members and

leadership. An open-ended electronic interview questionnaire was provided to

participants to explore the perceptions, views, beliefs, and attitudes related to software

life cycle leadership processes. “Qualitative data collection consists of collecting data

using forms with general, emerging questions to permit the participant to generate

responses; gathering word (text) or image (picture) data; and collecting information from

a small number of individuals or sites” (Creswell, 2008, p. 213).

www.manaraa.com

73

Qualitative research emphasizes context and the relation of themes and trends

based on the circumstances for the topic under study (Creswell, 2008; McMillan &

Schumacher, 2006; Salkind, 2003; Schram, 2006; Shank, 2006). The qualitative study

methodology supported collecting observations and results on the application of various

software development processes from leadership and team members. The data collected

from study participants was obtained by developing general open-ended questions on

software engineering methodologies, approaches, and processes. The study responses

were analyzed to identify trends, themes, characteristics, and behaviors supporting

successful software development programs.

Qualitative research focuses on meaning and understanding through investigation

in the subject environment (McMillan & Schumacher, 2006). Qualitative research does

not restrict the views and perceptions of the participants but seeks to gain understanding

and identify theories through open responses (Creswell, 2008; Leedy & Ormrod, 2005;

Salkind, 2003; Shank, 2006). Qualitative research is a systematic “form of inquiry that

depends upon the world of experience in some fundamental way” (Shank, p. 5). The

study explored the perceptions of software engineering leadership and team members

through collecting open-ended responses to an electronic interview questionnaire. The

use of open-ended electronic interview questionnaires “provides rapid access to large

numbers of people and a detailed, rich database for qualitative analysis” (Creswell, p.

227).

The research organization selected for the study consisted of distributed team

members in multiple locations. The use of the electronic questionnaire provided access to

a larger sample and allowed input across all team member functions and levels of

www.manaraa.com

74

expertise. McMillan and Schumacher (2006) noted in face-to-face interviews, the

researcher’s presence can often influence responses. The use of electronic open-ended

questions allowed maximum flexibility in participant responses (Creswell, 2008) and

provided a rich data set for review and analysis without constraining individual responses

(Creswell; Shank, 2006). Open-ended questions supported participant responses from

individual cultural, social, and technical experiences and did not limit the responses to

researcher views or perceptions (Creswell; Leedy & Ormrod, 2005; McMillan &

Schumacher; Schram, 2006; Shank).

Berg (2009) observed the use of the computer for communication and interaction

has become comfortable and common in technical environments. The use of computer

assisted interviews for qualitative research can transfer the comfort and familiar feel of

technology usage to the interview process (Berg). The electronic interview questionnaire

provides benefits over the face-to-face interview such as avoiding impacting demanding

work schedule or job requirements, providing an unambiguous context for responses,

incorporating a common and familiar method of communication, and avoiding errors in

transcription of responses (Berg; Beadell, 2009).

Beadell (2009) conducted a qualitative study on software process improvement

implementing an electronic interview questionnaire. Beadell observed the electronic

interview questionnaire provided advantages in collecting data by allowing participants to

“respond unobtrusively when they had spare time, either before or after work, and

afforded them a focused opportunity to be candidly objective in the quietness of their

office” (p. 103). The electronic interview also maximized the effectiveness and efficiency

of collecting and transmitting data, improved the data accuracy without recording or

www.manaraa.com

75

transcription errors, and provided responses full of elaborations and examples (Beadell).

Beadell further observed that the candid and rich responses might not have been acquired

in a face-to-face structured interview.

As noted by Creswell (2008), quantitative research focuses on measuring

variables and differences in variables for two or more groups. Qualitative research does

not strive to measure or compare groups or variables but strives to reach an expanded

understanding of the perceptions and views of an individual or single group of

individuals (Creswell; McMillan & Schumacher, 2006; Schram, 2006). Quantitative

research focuses on measuring the typical or ordinary condition (McMillan &

Schumacher; Shank, 2006). Qualitative research seeks to investigate conditions and

settings not functioning in the usual manner (McMillan & Schumacher; Shank). The

qualitative study investigated the “settings and conditions where things are not operating

as usual” (Shank, p. 106).

A qualitative study was appropriate to collect textual data from participants, ask

broad general questions, and analyze responses for themes in a subjective manner

(Bogdan & Biklen, 2007; Creswell, 2008; Leedy & Ormrod, 2005; McMillan &

Schumacher, 2006; Schram, 2006; Shank, 2006). This study sought to explore and

understand the leadership processes for successful program development. The qualitative

research study was appropriate to investigate the views and perceptions of software

development leadership to identify trends and themes. The qualitative method explores

participant views of a central phenomenon to enhance understanding, identify themes,

and develop theories (Bogdan & Biklen; Creswell; Leedy & Ormrod; McMillan &

Schumacher; Schram; Shank).

www.manaraa.com

76

The open-ended electronic interview questionnaire allowed respondents to

provide thoughts, views, and perspectives on software engineering and leadership

processes. The electronic interview provided access to large numbers of individuals to

obtain a rich textual database for qualitative analysis (Creswell, 2008). The results

obtained were reviewed to identify trends, themes, and concepts on successful and

unsuccessful software engineering practices.

Qualitative research methods investigate phenomenon by analyzing textual data,

graphic data, or observations (Creswell, 2008; Schram, 2006). The qualitative method

provides several research designs for developing the study and collecting data, including

phenomenological, case study, ethnographic, and grounded theory (Leedy & Ormrod,

2005; McMillan & Schumacher, 2006; Salkind, 2003; Schram). Each of these designs

was examined for use as the methodology for this study. After examination of each of

these designs, the grounded theory methodology was selected as the most appropriate

qualitative research design to match the research purpose and question.

The phenomenological methodology was reviewed as a possible research design

for this study. Phenomenological research designs focus on investigating individual

awareness and experiences through narratives and descriptions (Schram, 2006).

Phenomenology seeks to attach meaning to a phenomenon under study by investigating

the experiences of individuals (Leedy & Ormrod, 2005).

The phenomenological research design does not support development of theories

based on collected data but seeks to investigate a concept or phenomenon (Schram,

2006). This research study seeks to develop a theory on leadership processes that

contribute to successful software development programs. The phenomenological research

www.manaraa.com

77

method was not suited to meet the intent of the study. The grounded theory research

design seeks to enhance current theory and develop theories based on collected data from

social research (Glaser & Strauss, 1967, 2007; Leedy & Ormrod, 2005; Schram).

The case study methodology is “an analytic focus on an individual event, activity,

episode, or other specific phenomenon” (Schram, 2006, p. 106). This study seeks to

investigate the leadership attributes that contribute to successful software engineering

initiatives through the analysis of several development programs and not an individual

case. Implementing a case study approach for this research was not appropriate because a

case study focuses on describing individual actions or human behavior around a central

event or phenomenon (Leedy & Ormrod, 2005; Salkind, 2003; Schram).

This research study investigated the beliefs, attitudes, values, and behaviors of

software engineering leaders to develop a theory for leadership of successful software

development programs. Grounded theory research attempts to identify patterns and

themes in the collected data to understand the processes and develop theories (Charmaz,

2006; Leedy & Ormrod, 2005). The grounded theory design provides a rich data set for

analysis and theory development (Leedy & Ormrod).

The ethnographic methodology focuses on developing meaning of phenomena

through the observation of a group of individuals (Creswell, 2008; Schram, 2006).

Ethnographic research designs describe and interpret a cultural group’s beliefs, behavior,

and patterns that develop (Creswell; Leedy & Ormrod, 2005). Ethnographic designs

strive to reveal common cultural understandings based on the observation of a common

group (Schram). The ethnographic design was not appropriate because the intent of the

www.manaraa.com

78

study was not to reveal common understandings in software development, but rather to

develop theories on the leadership processes for success.

Corbin and Strauss (2008) observed grounded theory supports the development of

innovative views and theories. The qualitative grounded theory methodology supports

enhancement of current theories and introduction of new theories based on the

observations and experiences of participants (Glaser & Strauss, 2007; Leedy & Ormrod,

2005). Grounded theory does not focus on testing existing theory (Creswell, 2008;

Schram, 2006). Grounded theory focuses on an area of investigation and allows theories

to develop and emerge from the data (Creswell; Glaser & Strauss, 1967, 2007; Schram).

Research Questions

This qualitative grounded theory research study focused on leadership practices

for software engineering programs. The research question focused on the investigation of

leadership impacts for program development. Research question 1: What leadership

characteristics contribute to the positive outcome of software development programs?

The supplemental research questions focused on software practices. Research question 2:

What software practices contribute to the development of successful projects? Research

question 3: What software practices result in negative impacts to projects? These research

questions will guide and focus the study on the investigation and identification of

processes and practices that lead to successful software development programs and the

impacts of leadership approaches.

Woolridge et al. (2009) observed proper leadership planning and management

may decrease the project failure rate by providing effective scope definition approaches.

Subject matter experts in the field of software engineering have investigated the

www.manaraa.com

79

effectiveness of software processes (Boehm, 2006; Kenett & Baker, 2010). Additionally,

scholars have researched improvements in processes for software development (Beadell,

2009; Bonner, 2008; Sun, 2008) or improvement in leadership capabilities (Early, 2006;

Jain, 2007; Johnson, 2008). The research questions for this study focused on effective

integration of leadership capabilities and software processes for success. A grounded

theory study focusing on leadership and process added to the existing body of knowledge

by integrating the leadership and process dimensions for software engineering.

Population

Qualitative research seeks to identify “participants and sites based on places and

people that can best help us understand our central phenomenon” (Creswell, 2008, p.

213). This study focused on leaders and team members of software development

programs at a research organization in Alabama. The study invitation was distributed to

600 members of the selected organization. Respondents to the study invitation were

asked several demographic questions to identify individuals with experience in software

engineering and leadership. Data was collected from individuals meeting the sampling

criteria.

Sampling Frame

The study was conducted at a software research and development facility in

Alabama. The organization selected had significant experience in developing software

applications, obtained a level four CMM rating, and had numerous on-going development

efforts. The organization represented a typical software development facility with

distributed software teams. This environment provided a depth of information and

expertise that produced a rich data set for evaluation.

www.manaraa.com

80

A study invitation was provided to the organization e-mail distribution list.

Participation in the research study was voluntary. The study invitation included a link to

the interview questionnaire for those individuals who elected to participate. To focus on

leadership for software development, demographic questions were included in the

questionnaire to collect responses from leaders and team members of software

development programs. The questionnaire included skip logic for the demographic

questions to exit the survey for any respondents not in the desired sampling frame.

Responses were not collected from individuals in the organization not involved in

software development programs.

The goal of grounded theory research is to obtain enough data to identify patterns,

themes, concepts, and perceptions focusing on the central phenomena (Creswell, 2008;

Glaser & Strauss, 2007; Neuman, 2003). The sampling frame in grounded theory must

generate enough data for analysis (Corbin & Strauss, 2008; Creswell; Glaser & Strauss,

1967, 2007). For this study, theoretical sampling was used to select participants with

knowledge in software development and leadership. These experts in software

engineering provided the best available data for analysis and theory development

(Bogdan & Biklen, 2007; Corbin & Strauss; Creswell; Leedy & Ormrod, 2005; Neuman;

Shank, 2006).

The study invitation was provided to the organization population of 600

employees. The demographic questions were used to select the individuals with

experience in software engineering and leadership. The number of participants was 12%

of the invited population or 71 respondents. Creswell (2008) indicated a sample of one to

40 participants is acceptable for qualitative research. Larger sample sizes can result in

www.manaraa.com

81

difficulty managing data and subjects and may produce superficial perspectives

(Creswell). In qualitative research, the ability to acquire detailed information decreases as

the number of study participants increases (Creswell). Suzuki et al. (2007) also noted 3 to

30 study participants is an acceptable sample size for qualitative research to produce

meaningful results.

The study included periodic reminders to the population to increase the response

rate. Qualitative research data collection typically continues until saturation has occurred

(Creswell, 2008; Schram, 2006; Shank, 2006). Saturation occurs when the research is no

longer producing new findings or the investigation has reached the point in which the

same data is being collected (Creswell; Schram). Saturation is much like the law of

diminishing returns; the repetition in responses indicates additional research will not

produce further new, significant, or unique information (Creswell; Schram; Shank). For

this study, the time constraints for study completion, limited sample size, response rate,

and participant suitability affected the amount of data collected.

Saturation results when the responses are not generating any additional findings

(Glaser & Strauss, 1967). Bogdan and Biklen (2007) observed in qualitative research, the

researcher can collect too much data and must define a finishing point for data collection.

Continuing to collect data past this point will result in diminishing returns for the time

spent collecting and analyzing additional data (Bogdan & Biklen).

In grounded theory research, small sample sizes are common and do not prevent

the formulation of theories grounded in the raw data (Creswell, 2008; Suzuki et al.,

2007). Due to the time constraints for the study, a static sampling method was used in

which all data was gathered prior to analysis (McCleaf, 2007; Polkinghorne, 2005).

www.manaraa.com

82

Polkinghorne observed static sampling does not support data gathering from additional

participants but is often practical for data gathering.

For the study, the researcher did not seek data saturation but rather a finite and

rich data set for analysis. As Creswell (2008) observed, small sample sizes in grounded

theory research do not prevent the formulation of theories grounded in the raw data. The

small sample sizes often result in a rich data set for analysis and evaluation (Creswell;

Suzuki et al., 2007).

The researcher reviewed the collected data for common themes, perspectives, and

views. The final data coding and analysis was conducted for all respondents who met the

sample criteria of involvement in software development programs. Permission was

obtained to conduct the study and access the e-mail distribution list (see Appendix A) at

the selected research and development facility.

Informed Consent

A study invitation (see Appendix B) was provided to the e-mail distribution list.

The study invitation included a description of the study purpose, assurance that the

questionnaire responses were anonymous, and a link to the questionnaire website. The

initial page of the questionnaire website included a description of the study purpose and

assurance that participation was anonymous. Study participants provided their informed

consent to participate (see Appendix C). Respondents not willing to consent to the study

were able to exit the website without participating or providing any answers to the

interview questions.

Participants had a second opportunity to withdraw from the study. At the

completion of the questionnaire, respondents were required to select whether to submit

www.manaraa.com

83

their responses or exit for the website without participating. Previously entered responses

were deleted for individuals selecting to exit without participating. Data was not collected

or stored for any participant who elected to exit the website without submitting the

questionnaire.

Confidentiality

The participant identities and responses remained confidential in the research

process and report. The researcher maintained and controlled the information provided by

the study participants in a secured area. During review and analysis, a coding process was

implemented to provide additional assurance of participant anonymity. Data collected

electronically was downloaded to removable storage media for archiving.

Research information and documentation collected during the study process will

be maintained in a secured container for 3 years. The secured container is located in the

researcher’s office in a controlled access facility. After 3 years, all study hard copy and

electronic media will be destroyed using appropriate methods.

Geographic Location

The location of the study was the state of Alabama. The specific institution

participating was not disclosed due to possible confidentiality concerns. The institution

was a software research and development organization in Alabama. The organization

selected specializes in the development of complex, embedded software programs

through distributed software development teams.

Data Collection

This qualitative study used an electronic open-ended interview questionnaire as

the primary instrument for data collection (see Appendix D). The interview questionnaire

www.manaraa.com

84

contained basic demographic questions to determine the applicability of respondents for

the study. The demographic questions assured the respondents have been involved in

software development programs, identified the level of expertise, and identified the team

member role.

The open-ended questions focused on investigating the views, beliefs, and

perspectives related to software engineering development life cycle processes and

leadership approaches. The qualitative data collection approach supported general, broad

questions to participants to obtain unrestricted perspectives. The open-ended electronic

interview allowed respondents to provide thoughts, views, and perspectives to obtain a

rich textual database for qualitative analysis (Creswell, 2008).

The electronic questionnaire consisted of four sections; assurance of

confidentiality and informed consent, closed-ended demographic questions, open-ended

questions on software development, and a final opportunity to withdraw from the study

without submitting responses. Participation in the study was voluntary. The invitation

included a link to a questionnaire website. Data collected on the website was maintained

in a confidential, password protected database accessed by the researcher. At the

conclusion of the participant response timeframe, the data collected was downloaded

from the website and stored on removable media. All information system components

used for data collection and analysis were access controlled and password protected.

Instrumentation

The research study used an electronic interview questionnaire as the instrument.

The questionnaire consisted of open-ended questions on software development and

closed-ended demographic questions. The open-ended interview questions allowed the

www.manaraa.com

85

study participants to share experiences, views, and perceptions on leadership and

software engineering. Implementing a closed-ended questionnaire would not allow the

participants to share perceptions and experiences and would not produce the depth of

information required to identify themes and trends (Creswell, 2008; Shank, 2006).

Creswell (2008) observed an acceptable method of data collection for qualitative

research is to “collect open-ended responses to an electronic interview or questionnaire”

(p. 221). Electronic interviews are effective for collecting data from a dispersed group of

individuals. The electronic interview provides access to numerous potential participants

and can provide rich and detailed data for qualitative analysis (Creswell). Babbie (2010)

observed the electronic self-interview is an acceptable method of data collection where

the participant completes the questionnaire using the Internet and the results are provided

to the researcher for review and analysis.

Persichitte, Young, and Tharp (1997) noted several advantages to electronic

interviews over face-to-face interviews. Advantages of electronic interviews include

allowing respondents to be more careful and thoughtful in responding, elimination of

scheduling conflicts, reduced interruptions, and simplified data recording (Persichitte et

al.). The use of the electronic interview provides the participant with the flexibility to

review questions, reflect on responses before entering, and complete the interview within

individual time requirements (Babbie, 2010; Persichitte et al.).

The electronic interview has been successfully implemented in several qualitative

research studies. McCleaf (2007) collected data through an electronic questionnaire for a

qualitative grounded theory study on achievement of academic success for minority

females. Ogle (2009) implemented an e-mail questionnaire to collect data for an

www.manaraa.com

86

exploratory qualitative study on hotel management and customer satisfaction. In research

on positive development of youth through sports participation, Greenwood and Kanters

(2009) implemented a web-based self-administered questionnaire to collect data for

qualitative analysis.

In a research study exploring e-learning problems and solutions, Fichten et al.

(2009) implemented an online questionnaire consisting of closed-ended demographic

questions and open-ended interview questions. Baillie, Ford, Gallagher, and Wainwright

(2009) collected data for research on dignity in health care for the elderly using an

Internet questionnaire with both fixed response and free text questions. These studies all

collected data for qualitative analysis through the implementation of an electronic

interview questionnaire.

The purpose of this qualitative grounded theory study was to investigate

leadership and development practices applied to software development programs to

determine which processes are effective, beneficial, and applicable to achieving

successful program outcomes. A qualitative study was appropriate to collect textual data

from participants, ask broad general questions, and analyze these responses for themes in

a subjective manner (Creswell, 2008; Shank, 2006). The interview questionnaire

provided questions to investigate participant views on the leadership characteristics and

software development processes considered successful and unsuccessful.

Developing and implementing successful projects requires the effective balancing

of resources, environment, and processes (Cusumano, 2008). The theoretical framework

for this study focused on the open system paradigm integrating leadership approaches to

resources, environment, and processes (National Defense University, 2009; Scott &

www.manaraa.com

87

Davis, 2007). The interview questionnaire investigated software development in the

framework for open systems by developing questions on leadership capabilities and

software processes. The leadership capabilities explored the environment and approach

applied to software development programs. The process focused questions investigated

the processes and resources considered successful and unsuccessful in software

development initiatives.

The interview questionnaire implemented open-ended questions to obtain

participant perceptions, beliefs, and views (Creswell, 2008; Shank, 2006) on leadership

and processes for software development. Questions on software leadership characteristics

were developed to address the primary research question 1: what leadership

characteristics contribute to the positive outcome of software development programs?

Interview questions on successful and unsuccessful software processes were developed to

explore the supplemental research questions on software practices.

Several grounded theory research studies have developed interview questions

(Beadell, 2009; Bixenman, 2007; McCleaf, 2007; Murray, 2008) to investigate views and

perceptions of the participants for a particular phenomenon (Creswell, 2008; Neuman,

2003). In these studies, the type and number of questions varied but each study

implemented three to five open-ended questions on the primary phenomenon under study.

Beadell developed four questions related to CMMI compliancy impacts, Bixenman

developed three questions related to leadership for innovation, McCleaf developed four

questions related to minority academic success, and Murray developed five questions

related to leadership characteristics. The studies by Beadell, McCleaf, and Murray also

www.manaraa.com

88

included a final question allowing the participants to provide any additional views and

perceptions.

This grounded theory research study implemented four primary questions on

leadership for successful software development programs. The electronic interview

questionnaire contained four open-ended questions focusing on leadership for software

development and a final question allowing participants to provide additional thoughts,

views, and perceptions. The questionnaire contained demographic questions and three

open-ended questions focusing on the secondary topic of software processes.

The researcher obtained participants from the organization e-mail distribution list.

A study invitation was distributed to the e-mail list provided and included a description of

the study and a link to the anonymous questionnaire website. The interview questionnaire

contained four sections; informed consent, demographic questions, interview questions,

and opportunity to withdraw for the study.

The initial section contained an assurance of confidentiality and informed

consent. This section informed participants of the study purpose and data collection

process. Participants provided their consent to participate or elect to exit from the

questionnaire without participating. Participants completing the informed consent and

electing to participate continued to section 2.

The second section contained closed-ended demographic questions to assure

participants meet the study selection criteria. This section included skip logic to exit the

survey for any respondents not in the desired sampling frame. Responses were not

collected from individuals in the organization who do not meet the sampling criteria. If

www.manaraa.com

89

an individual did not meet the sampling criteria, they were thanked for participation and

exited from the interview.

The third section consisted of open-ended questions on software development and

leadership processes. This section implemented questions focused on exploring

perceptions of leadership attributes and development processes considered successful and

unsuccessful. The participants were provided with the opportunity to provide any

additional comments or information on leadership and software development.

The fourth section provided an opportunity for the participant to withdraw from

the study. Participants only reach this section after completing the informed consent,

section 2, and section 3. In section 4, the participant could elect not to participate after

completing the questionnaire and the informed consent. If the participant selected not to

participate, data entered in the previous sections was deleted and not collected for

analysis. If the participant selected to participate, the previously entered data was

collected and stored for analysis.

The interview questionnaire was developed by the researcher to address the

unique areas for investigation. No study instrument existed to investigate software

development and leadership processes for theory development. A unique interview

questionnaire was required to support data collection. The questionnaire was verified

through a pilot study. The completion of the initial pilot study assisted in verifying the

functionality of the selected questionnaire technology, verifying the accessibility of the

questionnaire website, and verifying the clarity and focus of the qualitative questions on

the desired study topics.

www.manaraa.com

90

Schram (2006) noted pilot studies are essential to understanding concepts,

identifying researcher assumptions and biases, and verifying the research method and

instrument. The pilot study provided the study instrument to five participants to obtain

feedback on study approach, format, and question phrasing. The pilot study responses

were not included in the data collection. The pilot study participant views were reviewed

and evaluated to improve the questionnaire quality. The research instrument was updated

as required from the observations, feedback, and analysis from the pilot study.

Validity and Reliability

Validity is concerned with assuring the data and information collected reflects

accurate facts and truth (Shank, 2006). The research study validity was dependent upon

the study participants providing truthful responses to the questionnaire (Shank). The

validity of the data analysis was dependent upon adequate assessment of the textual

responses by the researcher (Neuman, 2003; Shank).

In qualitative research, validity focuses on authenticity, or providing an accurate

representation of social phenomenon from the participants view (Neuman, 2003).

Quantitative researches focus on matching concept to data, but qualitative research

focuses on providing an accurate portrayal of the experiences of the participants

(Neuman). Validity for qualitative researchers focuses on providing an accurate

representation of the participants and events under study (Neuman).

Internal validity is concerned with errors internal to the design of the research

(Neuman, 2003). Internal validity focuses on possible errors in data collection and

analysis that could affect the study results (Neuman). External validity focuses on the

ability to generalize the findings to a broader range of environments and individuals

www.manaraa.com

91

(Neuman). In qualitative research, results that “can be generalized to many situations and

many groups of people” (Neuman, p. 187) have high external validity. Results that “apply

only to a very specific setting” (Neuman, p. 187) have low external validity. For this

study, the results were only generalized to the specific setting of software development

environments.

Reliability focuses on assuring the accuracy of the observations, information, and

data collected (Shank, 2006). The electronic questionnaire eliminated some of the issues

associated with data transcription and data entry. The participants provided responses to

each question. The reliability of the data was dependent upon the respondent providing

accurate and truthful responses (Shank). The reliability of the data can also be influenced

by the analysis (Neuman, 2003; Shank). One method to prevent researcher bias being

introduced into the analysis assures the coding used to group themes and trends during

data analysis is consistent and accurately reflects the participant responses (Shank).

To assure accurate and dependable data collection, a pilot study of the electronic

questionnaire was conducted before the research study. The pilot study verified

accessibility of the questionnaire website, the functionality of the selected questionnaire

technology, and the quality of the open-ended questions. The pilot study also verified the

clarity and focus of the study questions on the desired study topics. Pilot studies are

essential to understanding concepts, identifying researcher assumptions and biases, and

verifying the research method and instrument (Schram, 2006).

Data Analysis

The qualitative study used an open-ended questionnaire to collect textual data

from participants and ask broad general questions to analyze the responses for themes

www.manaraa.com

92

(Creswell, 2008). The questionnaire obtained views and perceptions from software

program leaders and team members to identify trends, behaviors, and characteristics for

successful management of software programs. A questionnaire was appropriate when

attempting to investigate and describe views, beliefs, attitudes, or aspects for a particular

group (Creswell). This study questionnaire explored leadership approaches and software

development methodologies to determine the processes which are successful, those which

are considered negative impacts to performance, and those which should be updated to

enhance program development initiatives. The study responses were analyzed to identify

trends, themes, characteristics, and behaviors supporting successful programs.

In qualitative research the data must be reviewed, organized, and analyzed to

reflect the perceptions of the participants (Shank, 2006). The data coding process sorts

the data into broad categories based on concepts, patterns, or similar features for analysis

by the researcher (Neuman, 2003; Shank). After the data is sorted or coded, the data is

again reviewed to explore what themes or patterns can be identified (Shank).

Neuman (2003) observed “qualitative coding is an integral part of data analysis”

(p. 441). For grounded theory research, data coding can be performed in several stages to

refine and manage the large amount of data collected (Creswell, 2008; Neuman). The

three stages of data coding that can be applied in grounded theory research are open

coding, axial coding, and selective coding (Corbin & Strauss, 2008; Neuman).

Open coding is the first review of the data by the researcher to sort the volume of

data into manageable themes or codes (Neuman, 2003). The information is segmented

into categories based on the phenomenon under study (Creswell, 2008). Axial coding is a

second pass through the data sorting the data based on the codes identified in the first

www.manaraa.com

93

review of the data (Neuman). In axial coding, the researcher refines and links themes and

concepts for the data (Creswell; Neuman). Selective coding involves reviewing data and

codes to refine and identify major themes and concepts in the data (Neuman).

In grounded theory research, Corbin and Strauss (2008) defined thematic analysis

as a process for coding and analyzing data. Thematic analysis focuses on identifying

patterns and themes in the data (Shank, 2006). As common observations and views are

identified in the data, themes and patterns emerge grounded in the raw data (Shank).

The textual data collected was analyzed for common trends, themes, and views.

NVivo 8 (QSR International, 2008) qualitative data analysis software was employed to

support data management, tracking, and organization. Collected data was downloaded

into NVivo 8 to effectively sort, track, and evaluate the raw data. Data was tabulated to

collect the common perceptions and trends provided in the questionnaire responses.

Analysis of the textual data provided in-depth meaning and understanding on the

concepts for the phenomenon under study (Creswell, 2008; Neuman, 2003).

The data analysis included review of the responses for common themes, words,

and concepts provided by the study participants. Themes were categorized based on key

leadership concepts, software processes, and open system theory. Data was analyzed to

identify theory and methods on successful leadership and process applications for

successful software development. Results of the data analysis supported theory

development on capabilities, themes, processes, and concepts for successful software

development and leadership.

www.manaraa.com

94

Summary

The purpose of this qualitative grounded theory study was to investigate

leadership practices applied to the software development program life cycle to determine

which processes are effective, beneficial, and applicable to achieving successful program

outcomes. This study examined and developed theories on which leadership practices and

processes facilitate successful programs based on observations from software team

leaders and team members. The research study implemented a qualitative research

grounded theory approach to obtain information on the perceptions, views, and opinions

of software team members and leadership.

An open-ended electronic interview questionnaire was provided to participants to

explore the perceptions, views, beliefs, and attitudes related to software life cycle

leadership processes. Qualitative research for this study was appropriate to emphasize

context and the relation of themes and trends based on the circumstances for the topic

under study (Schram, 2006). Qualitative research does not limit the responses and view

of the participants but attempts to gain understanding and identify theories through open

responses (Creswell, 2008; Shank, 2006).

This study focused on leaders and team members of software development

programs at a research organization in Alabama. The study invitation and informed

consent was distributed to all members of the organization on the e-mail distribution list.

The study was distributed to approximately 600 individuals with theoretical sampling

methodologies for data collection. The organization selected had significant experience in

developing software programs for multiple applications and was representative of a

typical software development facility with distributed software teams. The selected

www.manaraa.com

95

organization provided access to a depth of information and expertise on software

development to produce a rich data set for evaluation.

A study invitation was provided to the e-mail distribution list providing a

description of the study purpose, informed consent, notice that participation is voluntary,

assurance that the questionnaire responses were anonymous, and a link to the interview

questionnaire website. The initial page of the interview website included a description of

the study purpose and asked respondents for consent to the study. Data was not collected

or stored for any participant who elected to exit the website without submitting the

questionnaire. The participant identities and responses remained confidential during the

research process and report generation. Information provided was stored in a secured area

controlled by the researcher and will be destroyed after 3 years.

An electronic interview questionnaire was the primary instrument for data

collection. The interview questionnaire contained four sections encompassing assurance

of confidentiality and informed consent, closed-ended demographic questions, open-

ended questions on software development, and a final opportunity to withdraw from the

study before submitting responses. The demographic questions assured the respondents

had been involved in software development programs. The open-ended questions focused

on investigating the views, beliefs, and perspectives related to software engineering

development life cycle processes and leadership approaches.

The qualitative research data collected was reviewed, organized, and analyzed to

reflect the perceptions of the participants (Shank, 2006). The data coding process used

open coding, axial coding, and selective coding to organize and analyze the data (Corbin

& Strauss, 2008; Neuman, 2003). Open coding provides an initial sort of the data, axial

www.manaraa.com

96

coding reviews and sorts the data based on the codes identified, and selective coding

identified major themes and concepts (Creswell, 2008; Neuman). As common

observations and views were identified in the data, themes and patterns emerged

grounded in the raw data (Shank).

The textual data collected was analyzed for common trends, themes, and views.

The data was analyzed to identify and provide in-depth meaning and understanding on

the concepts for successful software development programs. The data analysis included

review of the responses for common themes, words, and concepts for categorization

based on key software concepts. Results of the data analysis supported theory

development on software engineering leadership by identifying the trends, themes, and

concepts on successful and unsuccessful software engineering practices. Chapter 4

presents a discussion on the data collection process, data analysis procedures, and results

of the study.

www.manaraa.com

97

CHAPTER 4: RESULTS

The purpose of this qualitative grounded theory study was to investigate

leadership and development practices applied to software development programs to

determine which processes are effective, beneficial, and applicable to achieving

successful program outcomes. The goal of this study was to explore and analyze

leadership and development processes for software engineering to identify a grounded

theory of characteristics that result in successful software development programs. The

research explored the experiences and unique perceptions of leaders and software

developers actively involved in software development programs.

Chapter 4 presents the results of the research study. An overview of the data

collection and analysis process is presented. This chapter provides a description of the

pilot study, pilot study results, research study, and themes identified.

Findings

This qualitative grounded theory research study investigated the software

engineering leadership processes and approaches that contribute to successful software

programs. Data was collected using an Internet questionnaire to obtain view, perceptions,

and beliefs from software engineering experts and team members. Data collection and

analysis were performed as described in Chapter 3. The sections of this chapter provide

an overview of the data collection and analysis, pilot study and results, instrumentation,

study population, and themes identified.

Data Collection

This qualitative study implemented an electronic open-ended interview

questionnaire as the primary instrument for data collection (see Appendix D). The

www.manaraa.com

98

interview questionnaire contained basic demographic questions to determine the

applicability of respondents for the study. Respondents without experience in software

development or leadership were exited from the interview. The open-ended interview

questions focused on investigating the views, beliefs, and perspectives related to software

engineering development life cycle processes and leadership approaches. The electronic

questionnaire contained four sections; assurance of confidentiality and informed consent,

closed-ended demographic questions, open-ended questions on software development,

and a final opportunity to withdraw from the study without submitting responses.

This study questionnaire explored leadership approaches and software

development methodologies to determine the processes which are successful, those which

are considered negative impacts to performance, and those which should be updated to

enhance program development initiatives. The study responses were analyzed to identify

trends, themes, characteristics, and behaviors supporting successful software programs. A

data coding process was used to sort the data into broad categories based on concepts,

patterns, and features for analysis. After data sorting, the data was reviewed a second

time to identify themes and patterns. As common observations and views were identified

in the data, themes and patterns emerged for development of grounded theory.

The data collected was analyzed for common trends, themes, and views. The raw

data collected was sorted for evaluation and analysis. Themes were categorized based on

key leadership concepts and software processes. Results of the data analysis and theme

identification were used for theory development on capabilities, themes, processes, and

concepts for successful software development and leadership.

www.manaraa.com

99

Pilot Study

The electronic interview questionnaire was developed for this research study.

Because the questionnaire was new, a pilot study was conducted to verify the adequacy

of the distribution method, interview questions, and skip logic for demographic questions.

The pilot study was conducted during the first three weeks of May 2010. Five individuals

with specific knowledge of software engineering leadership were selected to participate.

Three of the individuals had 10 or more years experience and were project leaders. The

other two individuals had less than 10 years experience and were software developers.

The pilot study participants were provided a link to the interview questionnaire.

Participants were asked to complete the interview as presented. Participants were then

asked to provide feedback on the adequacy of the electronic format, interview questions,

and suggestions for improvement. Each of the five individuals completed all interview

questions and provided feedback for improvement of the questionnaire.

The primary goal of the pilot study was to determine if the interview questions

approximated the intent for the research study. The demographic and open-ended

questions were completed by each of the five participants. Review of the responses

revealed that no changes were required for the demographic or open-ended interview

questions.

A secondary goal of the pilot study was to determine the adequacy of the data

collection method and procedures. The participants were asked to provide feedback on

the adequacy of the electronic method and approach. The five participants stated the

electronic questionnaire was easy to use and found no problems in accessing the

questionnaire or entering responses.

www.manaraa.com

100

The respondents provided two suggestions on the questionnaire format that were

incorporated into the final interview questionnaire. The first suggestion was to add a

progress indication on each page of the survey. The second suggestion was to present one

open-ended question per page. The pilot study presented all open-ended questions on one

page. The participants suggested this format presented too much information on one page

and could result in a lower response rate. The suggestions were incorporated into the final

electronic interview questionnaire.

Instrumentation

The instrument for this research study was an electronic interview questionnaire

created for this study. The questionnaire consisted of closed-ended demographic

questions and open-ended questions on software development and leadership. The

demographic questions obtained information on years of experience in software

engineering, position, and years of experience in leadership. The open-ended questions

allowed participants to share experiences, views, and perceptions on leadership and

software engineering. The electronic interview allowed collection from a distributed

group of individuals and supported participation by numerous individuals.

The interview questionnaire contained four sections; informed consent,

demographic questions, interview questions, and opportunity to withdraw for the study.

The initial section contained an assurance of confidentiality and informed consent.

Participants completing the informed consent and electing to participate continued to

section 2. The second section contained closed-ended demographic questions to assure

participants met the study selection criteria. Skip logic was implemented in this section to

exit the questionnaire for respondents not in the desired sampling frame.

www.manaraa.com

101

The third section consisted of open-ended questions on software development and

leadership processes. The final section provided an opportunity for the participant to

withdraw from the study. If the participant selected not to participate, data entered in the

previous sections was deleted and not collected for analysis. If the participant selected to

participate, the previously entered data was collected and stored for analysis.

Study Population

A study invitation (see Appendix B) was provided to a research and development

organization e-mail distribution list in Alabama with a population of 600 employees.

Participation in the study was voluntary. The study invitation included a description of

the study purpose, assurance that the questionnaire responses were anonymous, and a link

to the questionnaire website. Study participants provided their informed consent to

participate (see Appendix C) on the first page of the questionnaire. Respondents not

willing to consent to the study were able to exit the website without participating or

providing any answers to the interview questions.

The study invitation was distributed to the organization population on 1 June

2010. The study was open for data collection until 30 June 2010. At the end of the data

collection period 158 respondents had accessed the questionnaire. Of the 158 respondents

to the questionnaire, 142 agreed to the informed consent. Any participant without

experience in software development or leadership of software development programs was

exited from the study. Additionally, some participants completed the demographic

portion but did not provide responses to any of the open-ended questions. Respondents

not answering any of the open-ended questions were removed from the study sample for

analysis. Data from the remaining participants was collected for analysis. Data was

www.manaraa.com

 102

collected for analysis from the respondents agreeing to the informed consent, answering

the demographic questions, meeting the sampling criteria, providing answers to one or

more of the open-ended questions, and electing to submit answers in section 4 of the

questionnaire. Table 1 provides an overview of the participants for the study.

Table 1

Respondent Overview

Category Number

Respondents to Study Invitation 158

Respondents Agreeing to Section 1 Informed Consent 152

Respondents Answering Demographic Questions 142

Respondents Answering Open-ended Questions 72

Respondents Agreeing to Section 4 Informed Consent 71

As shown in Table 1, 158 individuals responded to the study invitation (see Appendix B).

After elimination of the individuals not agreeing to the informed consent, individuals not

meeting the sampling criteria, and individuals not answering any of the open-ended

questions, 71 participants provided data for the study.

Table 2 provides an overview of the participant job functions. All participants

selected job functions related to leadership or software engineering. Individuals selecting

the other category reported job functions of software analyst, information assurance,

configuration management, and software training. These individuals were included in the

survey.

www.manaraa.com

 103

Table 2

Participant Information on Job Function

Job Function Frequency Percentage

Executive Leadership 4 5.6

Team Leader 20 28.2

Senior Software/System Engineer 20 28.2

Software/System Engineer 16 22.5

Team Member 5 7.0

Administrative Support 2 2.8

Other 4 5.6

As shown in Table 2, participants in the survey represented a variety of leadership levels

and functions for software development. The participants represent the job functions for

software development teams. Figure 1 provides a graphical representation of the

demographic data for participant job function.

Participants by Job Function

4

20

20

16

5
2 4

Executive Leadership
Team Leader
Senior Engineer
Software Engineer
Team Member
Admin Support
Other

Figure 1. Frequency of participants by job function.

www.manaraa.com

 104

Table 3 provides and overview of the participant years of experience leading

software engineering efforts.

Table 3

Participant Years of Experience Leading Software Development

Experience Leading Frequency Percentage
Software Development

Less Than 1 Year 12 16.9

1 – 5 Years 18 25.4

6 – 10 Years 16 22.5

11 – 15 Years 10 14.1

16 – 20 Years 9 12.7

More Than 20 Years 6 8.5

As shown in Table 3, the experience level for leading software development programs

ranged from less than 1 year to more than 20 years. The various leadership experience

levels provided observations and views on software leadership from multiple

perspectives. Figure 2 provides a graphical representation of the demographic data for

years of experience leading software development efforts.

www.manaraa.com

 105

Years of Experience Leading Software Development

12

18

16

10

9

6

Less Than 1 Year
1-5 Years
6-10 years
11-15 years
16-20 Years
More Than 20 Years

Figure 2. Participant years of experience leading software development efforts.

Table 4 provides and overview of the participant years of software engineering

experience.

Table 4

Participant Years of Experience in Software Engineering

Software Engineering Frequency Percentage
Experience

Less Than 1 Year 8 11.3

1 – 5 Years 13 18.3

6 – 10 Years 14 19.7

11 – 15 Years 8 11.3

16 – 20 Years 11 15.5

More Than 20 Years 17 23.9

www.manaraa.com

106

As shown in Table 4, the years of software engineering experience range from less than 1

year to more than 20 years. The varied experience levels provided insight on software

engineering processes and procedures from multiple perspectives. Figure 3 provides a

graphical representation of the demographic data for years of experience in software

engineering.

Years of Software Engineering Experience

8

13

14
8

11

17
Less Than 1 Year
1-5 Years
6-10 years
11-15 years
16-20 Years
More Than 20 Years

Figure 3. Participant years of experience in software engineering.

Data Collection Results versus Plan

The planned data collection approach for the research study distributed the

electronic interview invitation to the e-mail distribution list containing 600 potential

participants. The planned response rate of 5% projected 30 participants. The study

invitation received an initial response from 158 individuals. After removing participants

who did not agree to the informed consent, did not meet the sampling criteria, or failed to

complete any of the open-ended interview questions, 71 participants contributed to the

study. This resulted in a response rate of 12% versus the projected 5%.

www.manaraa.com

107

The data gathering plan included 30 days for collection of data from respondents.

The study invitation and link to the electronic interview questionnaire were available for

30 days with periodic reminders provided to the e-mail distribution list. Potential

participants connected to the electronic questionnaire during the first 20 days of the data

collection period. After 20 days, no additional participants connected to the

questionnaire. The survey remained open for the 30 days as planned but did not result in

additional participants.

Biases

The participant demographics for the study resulted in potential biases for the

study results. Of the respondents completing the interview, 56.4% represented team

leaders or senior system/software engineers. This percentage of senior personnel

generates a potential bias in the results based on leadership perspectives and limited entry

level or team member perspectives.

The selected research and development organization has achieved a CMMI Level

4 rating. As a result, the requirement to meet CMMI standards presents a bias in the

participant responses for software development process and approaches. The

organizational requirement for the use of CMMI procedures and standards represents a

bias for participant responses.

Research Questions

This qualitative grounded theory research study focused on leadership practices

for software engineering programs. The primary research question focused on the

investigation of leadership impacts for program development. Research question 1: What

leadership characteristics contribute to the positive outcome of software development

www.manaraa.com

108

programs? The electronic interview questionnaire presented a total of 11 questions. The

first three questions obtained demographic information from participants. The remaining

open-ended questions focused on leadership for software development. Questions 4, 5, 6,

and 7 focused on the primary research question and sought to obtain views and

perceptions on successful leadership characteristics and approaches for software

development.

Interview Question 4 on Effective Leadership Approaches: What do you feel are

the most effective leadership approaches for successful programs? Why do you feel these

approaches are effective?

Interview Question 5 on Important Leadership Characteristics: What do you feel

is the most important leadership characteristic to support software development

programs? Why do you feel this characteristic is the most important?

Interview Question 6 on Successful Leadership Capabilities: In your experience,

what leadership capabilities or approaches have contributed to the success of software

development programs? Why do you feel they contributed to program success?

Interview Question 7 on Unsuccessful Leadership Approaches: In your

experience, what leadership capabilities or approaches have contributed to the delay or

failure of software development programs? Why do you feel they contributed to program

delay or failure?

The supplemental research questions focused on software practices. Research

question 2: What software practices contribute to the development of successful projects?

Research question 3: What software practices result in negative impacts to projects?

www.manaraa.com

109

Questions 8, 9, and 10 focused on the supplemental research questions and sought to

obtain views and perceptions on software practices and methodologies.

Interview Question 8 on Successful Software Processes: What do you feel is the

most important process for successful software development? Why do you feel this is the

most important process?

Interview Question 9 on Effective Development Methodologies: What software

development methodologies have you applied that are the most effective? Why do you

feel these methodologies were the most effective?

Interview Question 10 on Ineffective Development Methodologies: What software

development methodologies have you applied that are ineffective? Why do you feel these

methodologies were ineffective?

Question 11 of the electronic interview questionnaire provided the participants

with the opportunity to provide any additional insights, thoughts, or information on

leadership and software engineering.

Interview Question 11 Additional Comments: Please provide any additional

comments or insights you would like to share on software leadership capabilities or

software processes.

Themes Identified

The themes identified were derived from data coding and analysis of the

qualitative data collected through the electronic interview questionnaire. The data

collected from the 71 respondents providing answers to one or more open-ended

questions was coded and reviewed for common themes and patterns. Participation in the

study was anonymous and each participant was assigned a number from 1 to 71 for

www.manaraa.com

110

coding. Data coding supported examination of the open-ended responses obtained to

identify emerging themes and concepts.

Section 3 of the electronic interview questionnaire consisted of eight open-ended

questions on software leadership, processes, and methodologies. The questions focused

on obtaining participant views for leadership and software engineering. The open-ended

responses were reviewed and coded to identify themes for successful software

development and leadership.

The open-ended questions focused on software leadership, software processes,

and software development methodologies. Table 5 provides an overview of the eight

open-ended questions and the total responses for each question. The exact wording of

each question is provided in the interview questionnaire (see Appendix D).

www.manaraa.com

 111

Table 5

Open-ended Questions and Respondents

Question Number and Topic Number of
 Respondents

Question 4: Effective Leadership Approaches 68

Question 5: Important Leadership Characteristics 69

Question 6: Successful Leadership Capabilities 57

Question 7: Unsuccessful Leadership Approaches 61

Question 8: Successful Software Processes 54

Question 9: Effective Development Methodologies 50

Question 10: Ineffective Development Methodologies 46

Question 11: Additional Comments 37

For coding purposes, the participant number remained the same for each question

in the survey. Appendix E provides the specific demographic information for the

respondents to each open-ended question. Analysis and coding of responses provided by

participants resulted in the identification of themes for software engineering leadership,

software resources, and software processes.

Data Analysis

Qualitative research involves the review, organization, and analysis of collected

data to determine the perception of participants (Shank, 2006). Data coding sorts the data

into broad categories for further analysis (Neuman, 2003). Data coding supports

identification of emerging themes and patterns in participant responses (Shank). In

www.manaraa.com

112

qualitative research, data coding is performed in several stages to manage and refine the

large amount of textual data collected (Creswell, 2008; Neuman).

In this research study, the data collected from the 71 participants was reviewed for

familiarity with data content and potential categories. Initial sorting of the data was

conducted manually using index cards and whiteboards to identify potential categories

for the data. A second review refined the data and developed core categories for analysis.

After the initial data review and category identification, further analysis and

categorization was performed utilizing qualitative data analysis software. The NVivo 8

(QSR International, 2008) qualitative data analysis software supported additional

examination and classification of the textual information collected from participants.

The data analysis included review of the responses for common themes, words,

and concepts. Alignment of common categories supported identification of themes for

developing new leadership theory for software engineering. Analysis of identified themes

in the data resulted in identification of 13 success drivers for software development and

leadership. A second phase of analysis categorized the success drivers within the

theoretical framework of the open system paradigm.

The 13 key success drivers or themes were categorized based on the open system

paradigm. Open systems theory integrates resources, environment, and processes to

develop a cohesive synergistic approach and structure to leadership (National Defense

University, 2009). The open system paradigm incorporates the concept of continual

process improvement through monitoring, modifying, and improving processes and

procedures throughout the program life cycle (Bloch, 2008). Leadership in the open

system paradigm improves performance through integration of resources, environment,

www.manaraa.com

113

and processes to meet defined goals and objectives (Lewis, 2006). The open system

paradigm provides the framework for improved leadership through the development of

integrated approaches for success.

The data analysis process reviewed the 13 identified themes and identified three

categories related to open system theory: environment, resource, and process. The themes

that emerged from the data related to leadership approaches, procedures, software

development techniques, methodologies, and processes. Relating the themes to the open

system paradigm resulted in the identification of the three key categories of leadership

environment, implemented resources, and software processes. Each of these categories

provides a critical component required for software engineering success.

The leadership environment category identifies the key themes related to

development of a successful leadership environment. The software resource category

focuses on identification of the themes that provide critical software engineering

resources contributing to successful programs. The software process category identifies

the software development methods, procedures, and process that result in positive

program performance. The integration of these three themes becomes the framework for

grounded theory development on successful software engineering leadership.

The data analysis identified 13 key themes for software development success. The

analysis of these themes revealed the three categories of environment, resources, and

processes for successful leadership. Results of the data analysis supported theory

development on leadership environment, software resources, and software process for

successful software engineering efforts.

www.manaraa.com

114

Coding the Data

 According to Creswell (2008), “coding is the process of segmenting and labeling

text to form descriptions and broad themes in the data” (p. 251). Coding data involves

reviewing participant input and identifying codes to combine to create resulting themes.

The process of coding the data in this study followed basic steps as defined by Creswell

of: (a) reviewing initial data, (b) identify segments of information, (c) code the segments,

(d) combine codes to reduce redundancy, and (e) identify common themes from codes.

 Review of collected data provided an overview of the concepts and possible

codes. The individual questions represented segments of information to provide an

orderly process for review and coding. Review of responses provided an initial set of

codes for further review. Combining overlapping and redundant codes resulted in a

manageable set of codes for analysis. The final set of codes resulted in identification of

themes from participant responses.

Coding for Software Engineering Leadership. Analysis and coding of the

respondent data resulted in the identification of themes related to software engineering

leadership. The coding process identified initial codes, developed common codes, and

derived themes. Figure 4 provides a representation of the coding process, sample codes

identified, and resulting themes derived related to software engineering leadership.

www.manaraa.com

115

Figure 4. Coding process, sample codes, and derived themes for software engineering

leadership.

Coding for Software Engineering Resources. Analysis and coding of the

respondent data resulted in the identification of themes related to required software

engineering resources. The coding process identified initial codes, developed common

codes, and derived themes. Figure 5 provides a representation of the coding process,

sample codes identified, and resulting themes derived related to software engineering

resources.

www.manaraa.com

116

Figure 5. Coding process, sample codes, and derived themes for software engineering

resources.

Coding for Software Engineering Processes. Analysis and coding of the

respondent data resulted in the identification of themes related to software engineering

processes. The coding process identified initial codes, developed common codes, and

derived themes. Figure 6 provides a representation of the coding process, sample codes

identified, and resulting themes derived related to software engineering processes.

www.manaraa.com

117

Figure 6. Coding process, sample codes, and derived themes for software engineering

processes.

Question 4: Effective Leadership Approaches

Question 4 focused on effective leadership approaches. Participants were asked

what they thought the most effective leadership approaches were for successful software

development programs. The 68 respondents provided data that resulted in the three

themes for effective leadership approaches of empowerment of individuals, fostering

teamwork, and effective communication. Frequency of themes reported in responses is

provided in Table 6. The column labeled participants indicates the number of individuals

providing a response related to the theme. The column labeled frequency indicates the

number of occurrences in the data related to the theme. Example responses for each

theme are provided below.

www.manaraa.com

 118

Table 6

Themes for Question 4 Effective Leadership Approaches

Theme Participants Frequency

Empowerment of Individuals 24 47

Fostering Teamwork 27 48

Effective Communication 18 24

Theme 1: Empowerment of Individuals

Participant 1: “Employ people you can trust and then entrust them to do their job.

You don’t have to know it all, you just need to know how to get the know-it-all to

perform and report back to you.”

Participant 9: “Empowerment and responsibility shared among all members of the

team. Give ownership and identity to the IPTs so they can truly appreciate their role in

developing a quality product.”

Participant 14: “Allowing a team to do their job without micromanagement. This

approach is effective because it allows the team to express their ideas freely and possibly

present new ideas to the project.”

Participant 45: “Choose qualified people for the job, make sure they understand

the task, and get out of their way. Let them do their work.”

Participant 59: “Emulate any successful sports coach. Recruit members that are

talented and motivated. Call the next few plays to get the game started. Stand back and

watch them run.”

www.manaraa.com

119

Theme 2: Fostering Teamwork

Participant 3: “Teamwork and mentoring approaches so the developers can build

based upon more than just a specifications sheet.”

Participant 25: “My focus in my leadership activities is the motto: None of us are

as knowledgeable as all of us. This is to build teamwork and help everyone on the team to

know that they have valuable ideas to contribute.”

Participant 48: “Teamwork. The type of teamwork where everyone is respected

for what they do or can/cannot do. When a team feels connected nothing will stop them

in achieving the team goals.”

Theme 3: Effective Communication

Participant 8: “A leader who communicates well with their team can establish an

effective open-door policy. This will allow the lead to identify risks early, manage risk,

and accurately assess how the project is doing.”

Participant 12: “I feel that an open leadership is necessary for successful

programs. Everyone needs to be able to discuss with each other problems and successes

to be able to understand what each team member might need from other team members.”

Participant 34: “Communication, goals of the organization should be

communicated throughout the organization.”

Question 5: Important Leadership Characteristics

Question 5 focused on identification of important leadership characteristics for

successful development programs. Participants were asked what they thought the most

important leadership characteristics were for successful software development programs.

The 69 respondents provided data that resulted in the four themes of effective

www.manaraa.com

 120

communications, leadership by example, experience and intelligence, and empowerment

of individuals. Frequency of themes reported in responses is provided in Table 7.

Example responses for each theme are provided below.

Table 7

Themes for Question 5 Important Leadership Characteristics

Theme Participants Frequency

Effective Communication 31 51

Leadership by Example 22 37

Experience and Intelligence 18 28

Empowerment of Individuals 10 15

Theme 1: Effective Communication

Participant 10: “Communication to assure common understanding.”

Participant 24: “Clear and concise communication – whether communicating

verbally, via pencil and paper, or electronically, ensure that all parties have a clear and

concise understanding of the exchange.”

Participant 34: “Communication, goals of the organization should be

communicated throughout the organization.”

Participant 37: “Communication. If leaders cannot successfully communicate the

needs and status how can team members have any hope of producing what is needed. If

team members cannot successfully communicate their needs, issues, and successes how

can their lead know the accurate status of the project and guide tem to a successful

delivery.”

www.manaraa.com

121

Theme 2: Leadership by Example

Participant 5: “Lead by example and always stick to your word. Honesty will get

the best out of those under the leader.”

Participant 31: “A leader must be willing to do what they ask others to do. An

employee will be loyal to a manger who shows the same loyalty back. This not only

includes compliments for a good job but constructive criticism in areas where

improvement is needed with possible solutions to the issue and help achieving them.”

Participant 52: “Demonstrate leadership support. Lead by example.”

Theme 3: Experience and Intelligence

Participant 23: “Ensuring that all involved are trained to the highest degree

possible so the results can not be questioned.”

Participant 28: “First: Technical knowledge and comprehension. A leader that

cannot comprehend or relate to the underlying science, technology, or domain loses a lot

of respect from those he is leading.”

Participant 44: “It is a qualification knowledgeable about system engineering and

internal organizational standard teamwork. This type of knowledge promotes and

empowers the team to support the software development programs to be successful.”

Theme 4: Empowerment of Individuals

Participant 3: “Guidance as opposed to dictatorial specifications. This allows the

developer a chance to use innovative approaches.”

Participant 25: “Hire talented personnel and trust them to do their work.”

Participant 27: “Realizing that you do not have all of the answers and depending

on your team to provide the ones you don’t know. Treating your team with respect.”

www.manaraa.com

 122

Participant 69: “The ability to trust your team; to turn loose the reigns and let

them make decisions, so that they have a sense that the software product belongs to them.

With project/product ownership the team will put their best efforts forward in building

the system and take pride in what they have created together as a team.”

Question 6: Successful Leadership Capabilities

Question 6 focused on identification of leadership capabilities resulting in

successful software development programs. Participants were asked what leadership

capabilities they thought resulted in successful software development programs. The 57

respondents provided data that resulted in the four themes of effective communications,

fostering teamwork, experience and intelligence, and empowerment of individuals.

Frequency of themes reported in responses is provided in Table 8. Example responses for

each theme are provided below.

Table 8

Themes for Question 6 Successful Leadership Capabilities

Theme Participants Frequency

Effective Communication 29 54

Fostering Teamwork 18 25

Experience and Intelligence 17 29

Empowerment of Individuals 7 15

Theme 1: Effective Communication

Participant 9: “Leaders that continuously communicate with the development

teams and provided the big picture view, by use of integrated and detailed schedules or

www.manaraa.com

123

by other means. Trusted and supported the decision, analysis, and trade-offs proposed by

the development team (with appropriate back-up data).”

Participant 17: “Communication: This is key to open all available information to

everyone for a well rounded research of the issue.”

Participant 24: “Establishing open lines of communications – fostering an

environment of open communication both formally and informally will help ensure the

right questions are being asked and the issues are being brought forward.”

Theme 2: Fostering Teamwork

Participant 8: “A team-centric, honest approach will allow most efforts to be

completed successfully.”

Participant 19: “Team cohesiveness is very important to the success of a SW

development project. A team that works well together can almost run on autopilot,

however on the other hand, a mismatched team requires constant management attention.”

Participant 35: “Maximizing team efficiency through specialization is, in my

experience, the best path to program success.”

Theme 3: Experience and Intelligence

Participant 30: “Technical detail oriented leadership. A person in charge who

understands the technical approach and its potential challenges/issues will be better

prepared.”

Participant 32: “Technical competence, work ethics, concern for the project and

for the people working the project.”

Participant 57: “Having a boss/leader that has technical knowledge as well as

good management skills is helpful because I can ask technical questions when I need help

www.manaraa.com

124

on a particular assignment while he/she can also help the program advance by broadening

our customer base with good management skills.”

Theme 4: Empowerment of Individuals

Participant 19: “It is also very important to not only delegate responsibility for

tasks, but also the authority to do what is necessary to complete assignment tasks. A

manager who is not efficient at delegating will quickly become overwhelmed.”

Participant 46: “The ability to guide without being overbearing. This will help

with employees being more willing to be productive in order to make their boss look

good.”

Participant 69: “A management hands off approach (no mandates), letting the

team brainstorm their own ideas, coming to consensus, and developing a sense of

ownership in the product and process used to make the product.”

Question 7: Unsuccessful Leadership Approaches

Question 7 focused on identification of leadership approaches that contributed to

unsuccessful development programs. Participants were asked what leadership approaches

they thought resulted in unsuccessful software development programs. The 61

respondents provided data that resulted in the five themes of indecisive or inadequate

leadership, inadequate planning, inadequate communication, inadequate experience or

knowledge, and arrogant or ego driven leadership. Frequency of themes reported in

responses is provided in Table 9. Example responses for each theme are provided below.

www.manaraa.com

 125

Table 9

Themes for Question 7 Unsuccessful Leadership Approaches

Theme Participants Frequency

Indecisive or Inadequate Leadership 21 36

Inadequate Planning 20 40

Inadequate Communication 14 27

Inadequate Experience or Knowledge 14 22

Arrogant or Ego Driven Leadership 8 14

Theme 1: Indecisive or Inadequate Leadership

Participant 1: “Making a hasty decision or a decision without hearing all of the

necessary inputs. This causes many problems in the future.”

Participant 11: “Leadership that can’t make decisions with input from team

members and other stakeholders. Inability to work on a team (emotional intelligence).

Inadequate technical knowledge can sometimes be the cause of the indecisiveness.”

Participant 43: “The ones that sit in the ivory tower, you should bow down to me

and refuse to take input. Ones that waffle and give the customer everything with no

consideration to cost or schedule.”

Participant 69: “Ineffective management when decisions aren’t made at all, teams

can become like a rudderless ship adrift in a sea of work. Forcing a team to do more than

their resources will allow always dooms a development from the start.”

Theme 2: Inadequate Planning

Participant 2: “Allowing scope creep. Schedule gets destroyed.”

www.manaraa.com

126

Participant 9: “Leadership that focuses on daily fire fighting without the proper

focus of a future vision and plan. Urgent tasks prioritized, but they may not be the

important tasks. Lack of leadership attention to requirements definition and system

modeling.”

Participant 21: “Inadequate planning and correctly quantifying tasks usually

causes team to fail to identify the risks and needs of a project.”

Participant 46: “Unattainable timelines. Some managers push to meet or exceed

goals that are not feasible depending on the type of project.”

Theme 3: Inadequate Communication

Participant 10: “Poor communications, lack or planning (or sharing the plan)

avoiding decisions until default solution is reached.”

Participant 16: “Usually delays or failures result from an inability to effectively

communicate. Assumptions about successful communication early in the development

cycle that are shown to be inaccurate later result in great frustration, compounding the

issue of getting these assumptions corrected later in the cycle. Fixing the issues combined

with a team that still is unable to effectively communicate makes for a very difficult

task.”

Participant 37: “Failing to communicate all information available. Holding back

details because the team lead felt the team did not need to know. The team leader failing

to know the difference. The team had false assumptions about what they were supposed

to do and when.”

Participant 71: “Communication. Communication is at its best when it is bi-

directional and at its lowest when the communication traffic is one-way.”

www.manaraa.com

127

Theme 4: Inadequate Experience or Knowledge

Participant 12: “Lack of knowledge of the process can contribute to the delay or

failure of a program. If do not understand the process or even why there is a process then

you overlook many things that need to be done and they do not get scheduled resulting in

a late project and usually over budget.”

Participant 57: “It has delayed SW development when team leaders do not

understand the technical importance or place of a particular assignment or component.

This inability to understand the technical importance renders him in able to direct

teammates properly or to reference teammates where to find proper help when needed.”

Participant 64: “One not being able to develop quickly enough to deliver before a

program need or technology passes you by.”

Theme 5: Arrogant or Ego Driven Leadership

Participant 20: “Tyrannical/autocratic leaders typically alienate the team, leading

to a loss of morale and productivity. Another problem I’ve seen is the manger that’s more

worried about looking good to the customer/upper management and not taking care of the

folks below them. Again, this ruins morale and drops productivity.”

Participant 23: “Believing you are smarter than the requirements and that you can

do what you want, even though the requirements say different.”

Participant 48: “Arrogance in oneself or one’s buddies can delay or cause a

program to fail; others are turned off by arrogance and actually wish for failure.”

Participant 50: “Stubbornness, thinking you know all.”

Question 8: Successful Software Processes

www.manaraa.com

 128

Question 8 focused on identification of software processes for successful

development programs. Participants were asked what software processes they thought

resulted in successful software development programs. The 54 respondents provided data

that resulted in the four themes for successful development of requirement definition and

management, establishing procedures and processes, effective planning and scheduling,

and adequate testing. Frequency of themes reported in responses is provided in Table 10.

Example responses for each theme are provided below.

Table 10

Themes for Question 8 Successful Software Processes

Theme Participants Frequency

Requirement Definition and Management 21 48

Established Procedures and Processes 18 42

Effective Planning and Scheduling 11 26

Adequate Testing 5 10

Theme 1: Requirement Definition and Management

Participant 6: “Clearly defining the requirements. Cannot obtain what you cannot

define.”

Participant 11: “Thorough requirements development and management. Including

effort estimates with adequate rationale and assumptions. This provides the road-map,

keeps the team on track (avoid scope-creep), and as issues arise with a particular

requirement gives the management team a process to drop that requirement or estimate

how changes will impact cost and schedule.”

www.manaraa.com

129

Participant 30: “Successfully understanding the stakeholders’ requirements is

most important since it affects the rest of the life cycle. Rework can be very costly if

requirements are misunderstood.”

Participant 53: “Requirements definition! Think about them, discuss them,

identify them, and freeze them. A moving target is not a recipe for success.”

Theme 2: Established Procedures and Processes

Participant 1: “Establish a process and plan up front and stick to it, but be flexible

enough to adjust the processes and plans as necessary. Must do this wisely so that

changes are not made in haste to fix a single issue, but can be applied to the entire

program.”

Participant 44: “It is a defined internal organization process. Defined internal

organization process successfully provides manageable software program development

within the program timeframes and budgets.”

Participant 52: “Structured/repeatable SW development processes. Anyone can

come into a project and contribute without completely understanding the hardware

system they are supporting.”

Participant 70: “I can’t really name one process, but a development process that

has been fully documented and proven to work via validation/verification will work.

Every developer has their own process. Some are good, and some are bad. But the ones,

who document their development process and can show you where they are in the process

at any time you ask should work.”

Theme 3: Effective Planning and Scheduling

Participant 25: “PLANNING, Planning, and Planning.”

www.manaraa.com

130

Participant 37: “Communication, planning, and ability to adapt. Planning must

take into account roadblocks, skill sets of team, risk factors, yet include a dose of reality.”

Participant 46: “The planning stage. If errors can be caught in the planning stage,

the cost is lower than it would be to find errors in the test and analysis stage.”

Participant 68: “Planning, without planning you have no foundation.”

Theme 4: Adequate Testing

Participant 31: “Testing. If a customer gets a buggy piece of software presented as

a finished product, the whole team looks bad.”

Participant 42: “Functional testing. Flaws must be found before software ships.”

Participant 59: “Requirements. Requirements. Requirements. Followed by test,

test, and more test.”

Question 9: Effective Development Methodologies

Question 9 focused on identification of software development methodologies for

successful development programs. Participants were asked what software development

methodologies they thought resulted in successful software development programs. The

50 respondents provided data that resulted in the four themes of iterative development,

agile development, waterfall development, and CMM/CMMI. Frequency of themes

reported in responses is provided in Table 11. Example responses for each theme are

provided below.

www.manaraa.com

 131

Table 11

Themes for Question 9 Effective Development Methodologies

Theme Participants Frequency

Iterative Development 11 18

Agile Development 11 21

Waterfall Development 6 6

CMM/CMMI 5 6

Theme 1: Iterative Development

Participant 9: “Incremental build approach. Easily defined and measured for

program status, and can be defined based on program needs and risks.”

Participant 29: “The most effective methodologies I have used would be XP or

spiral model development methodologies. These methodologies take changes into

consideration while in development. There is a communication gap between software

developers and stakeholders. The more contact with the customer assures that at some

point this gap is bridged together.”

Participant 33: “Iterative development. Taking customer feedback to refine future

requirements is critical to creating a helpful product.”

Participant 66: “Iterative and incremental development.”

Theme 2: Agile Development

Participant 7: “Agile development.”

Participant 15: “Adaptive software development. I have been using agile

development for the last 10 years and it always delivers something that works. It may not

www.manaraa.com

132

be exactly what we wanted in the beginning but it works and meets the customer’s

expectations.”

Participant 20: “Rapid prototyping or what’s now being called SCRUM. Doing

the development as a series of small development cycles. This allows you to verify that

you’ve understood the customers desires much quicker and allows you to minimize any

rework required if it turns out you didn’t.”

Participant 32: “Agile or SCRUM. At the end of each sprint, stakeholders and

team members can meet to assess the progress of a project and plan its next steps. This

allows a project’s direction to be adjusted based on completed work not speculation or

predictions.”

Theme 3: Waterfall Development

Participant 28: “It depends on the nature of the project and the organization, but

honestly, a traditional waterfall methodology is often very effective when use

appropriately, when the domain is well understood and the requirements can be

sufficiently specified early on.”

Participant 53: “Waterfall using an effective verification and validation have

worked best for me. If the V&V is performed properly it will establish traceability for all

requirements to be fulfilled.”

Theme 4: CMM/CMMI

Participant 6: “CMM. Focus on the basics.”

Participant 27: “CMMI is very effective as long as it is within reason. Process for

the sake of process is not good. Process that aids in implementing proper solutions is

invaluable.”

www.manaraa.com

 133

Participant 71: “CMMI because you gain an opportunity to investigate the

software methodologies that are being used or have a methodology criteria to base ones

against.”

Question 10: Ineffective Development Methodologies

Question 10 focused on identification of software development methodologies

that resulted in unsuccessful development programs. Participants were asked what

software development methodologies resulted in unsuccessful software development

programs. The 46 respondents provided data that resulted in the two themes of lack of

management not process and waterfall development. Frequency of themes reported in

responses is provided in Table 12. Example responses for each theme are provided

below.

Table 12

Themes for Question 10 Ineffective Development Methodologies

Theme Participants Frequency

Lack of Management not Process 17 17

Waterfall Development 8 8

Theme 1: Lack of Management Not Process

Participant 6: “Most. Gimmicks that focus on ineffective details of engineering

and not on lack of management/leadership.”

Participant 9: “It has been my experience that it is not the methodology that was

at fault or ineffective, but instead the poor implementation of any methodology.”

www.manaraa.com

134

Participant 69: “Poor planning and asking the team to do more that was possible

given the resources the team had to work with.”

Theme 2: Waterfall Development

Participant 7: “Stringent, heavyweight processes such as Waterfall methods,

which are very management driven tend to stifle the sense of ownership and self-

management that are critical, particularly to the younger generation of developers.”

Participant 15: “Waterfall does not work in development projects.”

Participant 29: “Any type of waterfall methodology just ends badly.”

Participant 67: “Waterfall – long cycles and dynamic personnel situations make

this method long in the tooth.”

Question 11: Additional Comments

Question 11 allowed participants to provide any additional comments,

observations, or views on leadership, software development, and processes. Participants

were asked to provide any additional comment as desired. The 37 respondents provided

data that emphasized the themes identified in the previous questions. Participants stressed

the importance of communication, teamwork, empowerment, and experience for effective

leadership. Participants noted good leadership skills are essential to successful software

development. Example responses are provided below.

Participant 1: “A good leader can lead anything. They don’t have to be a great

software leader to successfully lead a software program…just a good leader with wise

decision making capabilities.”

www.manaraa.com

135

Participant 29: “To be a successful lead, there is a lot more than knowing many

types of processes or methodologies. It is almost more important to understand you

counter-parts and understand how they approach processes.”

Participant 57: “It is important to keep everyone informed on all sides of software

development.”

Participant 69: “Good team leaders communication with their folks, empower

them to make decisions and suggest changes to the development process.”

Summary

This qualitative grounded theory study investigated leadership and software

development practices applied to software development programs. The goal of the study

was to explore and analyze leadership and development processes resulting in successful

software development programs by obtaining views and perceptions of software

developers, leaders, and team members. The research explored the experiences and

unique perceptions of leaders and software developers actively involved in software

development programs.

Data for the study was collected using an Internet questionnaire to obtain views,

perceptions, and beliefs from software engineering experts and team members. The

electronic questionnaire contained four sections; assurance of confidentiality and

informed consent, closed-ended demographic questions, open-ended questions on

software development, and a final opportunity to withdraw from the study without

submitting responses. The study responses were analyzed to identify trends, themes,

characteristics, and behaviors supporting successful software programs. Data coding

www.manaraa.com

136

sorted the data into broad categories and data sorting identified emerging themes and

patterns related to software development and leadership.

Data was collected for analysis from the respondents agreeing to the informed

consent, providing answers to the demographic questions, meeting the sampling criteria,

providing answers to one or more of the open-ended questions, and electing to submit

answers in section 4 of the questionnaire. Data collection resulted in 71 participants

providing views and perceptions on leadership and software engineering.

Data coding and analysis resulted in identification of themes for software

engineering leadership and software development processes. For successful software

leadership the five themes of empowerment of individuals, fostering teamwork, effective

communication, experience and intelligence, and leadership by example were identified.

Data collected on unsuccessful leadership characteristics and approaches resulted in the

five themes of indecisive or inadequate leadership, inadequate planning, inadequate

communication, inadequate experience or knowledge, and arrogant or ego driven

leadership.

Secondary research questions focused on identification of effective processes and

methodologies for software development. For successful software processes the four

themes of requirement definition and management, established procedures and processes,

effective planning and scheduling, and adequate testing were identified. Data analysis

identified the four themes for effective development methodologies of iterative

development, agile development, waterfall development, and CMM/CMMI approaches.

Chapter 4 presented the findings of the qualitative grounded theory study on

software engineering leadership. Chapter 5 provides an analysis of the identified themes

www.manaraa.com

137

and theories developed. Chapter 5 presents conclusions, implications, and

recommendations on software engineering leadership and software process application

that emerged from the study.

www.manaraa.com

138

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

Chapter 4 presented the results of the data collection for this qualitative grounded

theory study. The textual data collected was reviewed for themes related to software

engineering leadership. The electronic questionnaire provided views on software

engineering leadership, software development, software processes, and software

methodologies. Analysis of collected data produced several themes related to software

development and leadership. The collected data and identified themes were presented

without interpretation of the data or development of theory.

The purpose of the study was to investigate leadership and development practices

applied to software development programs to determine which processes are effective,

beneficial, and applicable to achieving successful program outcomes. The qualitative

study implemented a grounded theory research methodology for data collection and

analysis. Interpretation of the data contributed to the development of new software

engineering leadership theory from the identified themes. Chapter 5 provides an

interpretation of the data and themes as a result of the grounded theory analysis.

Conclusions

This qualitative grounded theory research study investigated the views and

perceptions of software engineering leaders and team members. The electronic

questionnaire obtained views and perceptions on leadership practices for software

engineering programs. The primary research question investigated leadership impacts for

program development. The supplemental research questions investigated successful

software practices. The research questions guided the study to investigate and identify

www.manaraa.com

139

processes, practices, and leadership approaches that contribute to successful software

development programs.

Interpretation of the research findings contributed to the development of new

leadership theory for successful software development programs. The data collected and

themes identified support theory development through the theoretical framework of open

systems. The research questions framed the study focusing on software leadership and

software practices. Interpretation of the findings resulted in identification of new theory

for successful software engineering leadership.

Research Questions and Theory Development

The primary research question investigated leadership practices for software

engineering programs. Research question 1: What leadership characteristics contribute to

the positive outcome of software development programs? The supplemental research

questions investigated software practices. Research question 2: What software practices

contribute to the development of successful projects? Research question 3: What software

practices result in negative impacts to projects?

Analysis of the collected data resulted in the identification of 13 critical themes

for successful software development. These 13 themes resulted in the identification of the

three categories of leadership environment, software resources, and software process.

These themes and categories formed the basis of the development of a leadership theory

for software development.

Leadership Environment Category

Open-ended questions 4, 5, 6, and 7 of the electronic interview questionnaire

investigated the primary research question and sought to obtain views and perceptions on

www.manaraa.com

 140

successful leadership characteristics and approaches for software development programs.

The interview questions investigated leadership approaches, capabilities, and

characteristics perceived to support successful software development initiatives. Analysis

of the data revealed five common themes for successful leadership: (a) effective

communications, (b) fostering teamwork, (c) experience and intelligence, (d)

empowerment of individuals, and (e) leadership by example. Table 13 provides a

summary of the frequency for each of the themes in the participant responses.

Table 13

Frequency of Environmental Themes for Participant Responses

Theme Frequency

Effective Communications 129

Fostering Teamwork 73

Experience and Intelligence 63

Empowerment of Individuals 77

Leadership by Example 51

These five themes relate to the development of a leadership environment

contributing to successful software development programs. Each of these themes

provides a critical component for leadership environment. Participants stressed the

importance of these components for leadership in achieving successful outcomes.

Effective communications. Participants stressed effective communications

throughout the responses. For the 71 participants, open-ended responses referenced

communications 129 times in questions 4, 5, and 6. Question 7 asked for perceptions on

www.manaraa.com

141

ineffective leadership approaches. The participants sited ineffective communications as

the reason for program failure 27 times in the responses. This result emphasizes the

importance of effective communications in supporting successful software development

environments.

Mohtashami et al. (2006) observed effective communications are essential to

successful software development teams. Effective communication of objectives and open

communication throughout development by leadership fosters improved collaboration

(Bharadwaj & Saxena, 2006) and provides the framework for leadership success

(Nielsen, 2009). For successful software development, leaders must stimulate creativity,

enable achievement of objectives, and articulate a clear vision through effective

communications (Denning, 2007; Nielsen).

Effective communications contributes to program success while ineffective

communications prohibit success. Communications are not only essential to program

success but also lack of communication or ineffective communication can be detrimental

to program development. Participant views revealed communications is a critical factor to

achieving leadership and program success in the software engineering environment.

Fostering teamwork. Participants mentioned teamwork 73 times in questions 4

and 6 on effective leadership approaches and leadership capabilities for success. Team

development, support, and participation are perceived as essential to leadership success.

However, in question 7 lack of teamwork or team development was only cited twice as a

factor for ineffective leadership. Enabling teamwork, supporting team objectives, and

contributing to team activities contribute to successful leadership of software programs.

www.manaraa.com

142

Fostering teamwork has a positive effect on software development leadership but lack of

teamwork is not a primary contributor to negative program outcomes.

Software engineering programs achieve objectives through the integration of

experts, information, and knowledge (Neumann, 2008; Peppard et al., 2007). Innovations

in technology and networking capabilities demand complex, integrated, and innovative

software systems to meet emerging customer requirements (Hadar & Leron, 2008; Kirova

et al., 2008; Schneidewind, 2007). Successful development of complex software systems

requires collaborative software teams developing software applications meeting

consumer quality, reliability, and functionality demands (Brown & McDermid, 2008; Lee

et al., 2006). Developing an innovative and creative environment fostering teamwork

contributes to the achievement of critical software development objectives.

Experience and intelligence. Experience was present in responses to questions 4,

5, and 6. Participants referenced the importance of experience, knowledge, and

intelligence for leadership in 63 instances. In question 7, participants cited inadequate

knowledge or experience 22 times as a factor in ineffective leadership. Knowledge,

intelligence, and experience of leadership are critical to achieving program success. The

lack of knowledge and intelligence contributes to program failures.

Knowledge is a critical asset requiring effective management to sustain

competitive advantage (Mathew, 2008). In the software development environment,

knowledge supports decision-making, problem solving, and achievement of objectives

(Mathew & Kavitha, 2008). The complex software development life cycle requires

knowledge of processes, methodologies, practices, and approaches for success (Landaeta,

2008).

www.manaraa.com

143

Participants in the study viewed knowledge and intelligence as critical attributes

for effective leadership. Leadership without knowledge or experience resulted in negative

impacts to program success. Experience, knowledge, and intelligence are integral to the

success and effectiveness of leadership for software development programs.

Empowerment of individuals. Participants mentioned the importance of

empowerment throughout the responses. In questions 4, 5, and 6 empowerment was

referenced 77 times as an attribute contributing to successful program outcomes. In

question 7, failure to empower individuals was not listed as a contributor to program

failure. However, similar characteristics such as indecisive leadership, arrogant

leadership, and ego driven leadership were cited as reasons for program failures.

Northouse (2010) observed the complex, integrated, and dynamic software

development environment requires leaders to empower team members to meet goals and

objectives. Empowered individuals accept ownership, take responsibility, exercise self-

discipline, and increase efficiency (Cagle, 2007; Chan et al., 2008). Leaders can

encourage innovation, creativity, productivity, and proficiency to flourish through

development of environment empowering individuals (Cagle; Chan et al.).

In conjunction with fostering teamwork, empowerment of individuals is a critical

component for software development program success. The complexity of software

efforts requires integrated individuals empowered to meet objectives and program goals.

Individuals and teams require empowerment for task completion, decision-making, and

problem solving to achieve critical software program objectives.

Leadership by example. Participants referenced leadership by example 51 times in

responses to questions 4, 5, and 6. In question 5, identification of the most important

www.manaraa.com

144

leadership characteristics for success, leadership by example was listed 37 times as

critical to program success. Participants also noted the importance of removing ego,

arrogance, stubbornness, and indecision from leadership approaches. Software

development programs require involved, trustworthy, and supportive leaders setting the

example.

Ilies et al. (2006) observed leadership is not about the direction of individuals.

Leaders motivate, support, inspire, and foster achievement in themselves and others (Ilies

et al.). Demonstrating enthusiasm for objectives, providing employee support, and

participating in team activities are attributes of successful leadership (Northouse, 2010;

Taylor, 2007). Leaders obtain the maximum potential from followers through motivation,

encouragement, support, and participation (Tarabishy et al., 2005). Effective leadership

inspires followers to higher performance levels through setting a positive example (Ilies

et al.).

In the study, participant views revealed the importance of setting the example,

working with the team, and removing ego from leadership approaches. Successful

leadership for software development is a part of the solution through interaction and

support of individuals and teams. Leaders participating and supporting team activities

contribute to program success.

Emerging Theory for Leadership Environment

Analysis of data collected for questions 4, 5, 6, and 7 resulted in five themes

related to leadership characteristics, attributes, and approaches for software engineering.

Interpretation of the resulting themes revealed an emerging theory related to the open

systems paradigm of environment, resources, and processes. The themes for software

www.manaraa.com

145

leadership relate to development of an effective environment for success. Participant

views revealed software development programs result in successful outcomes through

implementation of effective leadership environments.

Themes derived from the data revealed the requirement for leadership

environments providing effective communication, teamwork, experience, empowerment,

and leadership by example. These leadership approaches result in an effective

environment for performing software development. The research data indicated the

importance of implementing an effective leadership environment for software

development success.

The leadership environment provides the foundation for team interaction,

performance, and productivity. Integrating the critical components for an effective

environment contributes to supporting team initiatives and achieving successful

outcomes. Developing a successful leadership environment requires application of each

of these components for success. Focusing on any single attribute limits the effectiveness

of the leadership approach.

An effective leadership environment incorporates successful approaches for

communication, teamwork, experience, empowerment, and examples. Integration of

these components provides the environmental aspect of the emerging leadership theory.

Figure 7 presents emerging theory development for the environmental component of the

open system theoretical framework.

www.manaraa.com

146

Figure 7. Environmental component for emerging leadership theory.

The open system paradigm integrates the areas of environment, resources, and

processes. Investigation of the primary research question resulted in the identification of

software leadership environments contributing to successful program initiatives. The

supplemental research questions resulted in identification of attributes for resources and

processes.

Software Resource Category

Open-ended question 8, 9, and 10 of the electronic interview questionnaire sought

to obtain views and perceptions on software practices, methodologies, and resources for

successful programs. Question 8 investigated perceptions on the most important process

for software development. Question 9 investigated perceptions on the most effective

software development methodology. Question 10 investigated perceptions on ineffective

software development methodologies.

www.manaraa.com

 147

Data coding and analysis for questions 8, 9, and 10 revealed core themes related

to required resources for successful software development. Participant responses resulted

in four main themes related to required resources for successful development programs:

(a) requirements definition and management, (b) established procedures and processes,

(c) effective planning and scheduling, and (d) adequate testing. Table 14 provides a

summary of the frequency of themes in the participant responses.

Table 14

Frequency of Resource Themes for Participant Responses

Theme Frequency

Requirements Definition and Management 48

Established Procedures and Processes 42

Effective Planning and Scheduling 26

Adequate Testing 10

These four themes relate to the approaches and resources required for software

development programs. Each of these themes provides a critical resource for conducting

software development programs. Participants stressed the importance of these resources

in achieving successful outcomes.

Requirements definition and management. Requirements definition and

management was the predominant resource identified for successful development

programs. Participants referenced the importance of requirements 48 times in the

responses. Participants stressed the importance of requirements management for

successful software programs. Participants referenced ineffective requirements

www.manaraa.com

148

management 7 times as a contributing factor to failed software programs. Developing

accurate requirements is a key resource for successful software development programs.

Requirements define the desired functionality for the software product (Pressman,

2010). Defining and managing requirements is a critical activity contributing to the

success of the software product. Implementing requirements management provides a

framework for design, development, and testing. Assuring customer and end user

requirements are met results in increased customer satisfaction, improved product

acceptance, and reduced errors (Salinas, Prudhomme, & Brissaud, 2008).

Requirements management assists the development team in controlling,

identifying, tracking, and managing changes throughout the project life cycle (Pressman,

2010). Failure to manage requirements results in uncontrolled, continually changing, and

hard to manage software programs (Pressman; Salinas et al., 2008). Incorporating

effective requirements management approaches supports successful software

development.

Established procedures and processes. The second most frequent resource listed

was establishing and following procedures and processes for the program. Participants

referenced the importance of established procedures 42 times. Providing procedures and

processes for the development life cycle is a critical resource for software development.

The generation of procedures and processes for software development activities is critical

to program success.

Software processes support the effective and organized development of software

products (Jianguo et al., 2008). Through application of software development and

management processes, the quality of products is enhanced and development efficiency is

www.manaraa.com

149

improved (Li, Chen, & Lee, 2003). The performance of the organization depends on

successful software development. Establishing and following software development and

management processes throughout the life cycle supports increased productivity and

improved performance (Jianguo et al.). Software processes provide the foundation for

successful execution of tasks and development activities to achieve software engineering

objectives.

Effective planning and scheduling. Establishing comprehensive plans and

schedules for program activities was referenced 26 times in participant responses. The

importance of developing and following plans and schedules to meet critical objectives

was a core theme in the data. Program plans and schedules are key resources for effective

software engineering programs.

Effective planning is essential to identifying approaches, challenges, and

opportunities for achieving program objectives (Amiri, Kavousy, & Azimi, 2010).

Developing and implementing program plans and schedules provides the foundation for

successful task execution. Leaders for software development programs establish program

plans, define development schedules, and monitor activities throughout the product

development life cycle (Kerzner, 2009). Plans and schedules provide a method of

benchmarking performance, identifying potential shortfalls, and supporting resource

allocation (Amiri et al., 2010). Establishing, monitoring, and following plans and

schedules provide leadership with the roadmap for successful software development.

Adequate testing. Participants cited the importance of adequate test approaches in

the responses 10 times. Adequate testing of developed products is a critical resource in

www.manaraa.com

150

determining the success of development efforts. Delivery of products without adequate

testing results in failed products, programs, and reduced customer satisfaction.

The success of software development programs depends on user acceptance of the

delivered product. Delivering accurate and reliable software requires adequate testing

(Iacob & Constantinescu, 2008). Testing verifies the system meets established

requirements, the product performs as designed, and critical errors are identified before

delivery (Pfleeger & Atlee, 2010). Software programs are often listed as failures when

the product does not meet user requirements (Rubinstein, 2007; Woolridge et al., 2009).

Performing adequate testing results in improved product quality, increased reliability, and

enhanced user satisfaction (Iacob & Constantinescu). Establishing adequate testing

approaches supports successful software development initiatives.

Emerging Theory for Software Development Resources

Analysis of data collected for questions 8, 9, and 10 resulted in four themes

related to leadership resources for successful software development programs.

Interpretation of the resulting themes revealed an emerging theory related to the open

systems paradigm of environment, resources, and processes. The themes for effective

software practices relate to resources contributing to successful software development.

Participant views revealed software development programs result in successful outcomes

through inclusion of resources for software development.

Themes derived from the data revealed the requirement for software development

resources resulting in requirement definition and management, established procedures

and processes, effective planning and scheduling, and adequate testing. Providing these

software engineering specific resources results in successful software development. The

www.manaraa.com

151

research data emphasized the importance of defining effective software development

resources for success.

The software development resources provide the framework for performing

activities throughout the development life cycle. Developing a set of critical resources for

successful software development fosters improved performance and increased product

quality. Developing a successful leadership approach to software development requires

awareness of these required software resources. Effective application of resources at each

stage of development results in achievement of program objectives, quality products, and

user satisfaction.

Leadership for success software programs incorporate effective approaches for

application of requirements management, processes, planning, and testing. These

approaches for software activities provide the resource aspect of the emerging leadership

theory. Figure 8 presents emerging theory development for the resource component of the

open system theoretical framework.

www.manaraa.com

152

Figure 8. Resource component for emerging leadership theory.

Investigation of the secondary research questions resulted in the identification of

software engineering resources contributing to successful program development.

Software resources provide the second component for effective leadership for software

development programs.

Software Process Category

Question 9 investigated perceptions on the most effective software development

methodology. Question 10 investigated perceptions on ineffective software development

methodologies. Participants listed agile or iterative methodologies as most effective with

21 and 18 occurrences. CMM/CMMI and waterfall methodologies were also listed at 6

occurrences each. Agile and SCRM methodologies were the most popular with rationale

most often reported as previous experience. Iterative methodologies include incremental,

spiral, and phased approaches to software development. Participants cited previous

www.manaraa.com

 153

experience with these methodologies and successful programs as the rationale for

selecting the individual method.

Data coding and analysis for questions 8, 9, and 10 revealed core themes related

to required processes for successful software development. Participant responses resulted

in four main themes related to processes for successful development programs: (a) agile

development methodologies, (b) iterative or incremental development, (c) CMM/CMMI

processes, and (d) waterfall-based methodologies. Table 15 provides a summary of the

frequency of themes in the participant responses.

Table 15

Frequency of Process Themes for Participant Responses

Theme Frequency

Agile Development Methodologies 21

Iterative or Incremental Development 18

CMM/CMMI Processes 6

Waterfall-Based Methodologies 6

These four themes relate to the processes contributing to successful software

development programs. Each of these themes provides a successful process identified for

software development programs. Participants stressed the importance of these

components in achieving successful outcomes.

Agile development methodologies. The interview questionnaire investigated

participant views on effective software development methodologies. Participants

referenced the success of agile development methodologies 21 times in the responses.

www.manaraa.com

154

Participants noted agile development resulted in successful program implementations for

large and small development efforts.

Agile development methods improve software development performance through

the implementation of methods for quick response to changing requirements and

environments (Aken, 2008). Short development iterations produce partial functionality

for testing and evaluation (Pozgaj et al., 2007). Feedback from the end user is

incorporated into the following iteration to improve the product (Clutterbuck et al.,

2009). Agile development methodologies provide software engineers flexibility in the

development approach and result in improved customer satisfaction (Keston, 2008).

Iterative or incremental development. The second most frequent theme for

software processes was iterative or incremental development. Participants referenced

iterative, spiral, or incremental approaches 18 times. Iterative approaches provide

developers the capability to develop partial functionality and improve the product

incrementally.

Iterative, incremental, or spiral development provide overlapping increments for

implementation of software development in cycles as opposed to completing an entire

phase before proceeding into the next development phase (Guntamukkala et al., 2006;

Rajlich, 2006). Iterative or incremental development divides the project into a series of

activities represented by a traditional waterfall model (Siddiqui et al., 2006). Software

development teams perform successive refinements during the life cycle to produce the

product (Siddiqui et al.). The customer evaluates the product incrementally to provide

feedback for product improvements (Pressman, 2010). Spiral models follow the phased

www.manaraa.com

155

approach of incremental models with additional emphasis on risk analysis and mitigation

at each stage of product development (Boehm, 1988; Hashmi & Baik, 2007).

CMM/CMMI processes. Participants referenced CMM/CMMI processes as the

most successful 6 times in the responses. Establishing processes through the philosophy

of CMM/CMMI provides a framework for software development. Participants revealed

CMM/CMMI approaches provide a structured process approach to development that

supports implementation of multiple methodologies and processes for software

development.

CMM/CMMI provides an approach for analyzing and understanding the

capability maturity of applied processes within an organization (CMU/SEI, 2006). The

CMM and CMMI approaches provide a framework for organizations to determine

maturity level, identify critical issues for process improvement, define the software

process, and implement process improvement programs (Galin & Avrahami, 2006).

CMM/CMMI models do not define a particular process for software development but

rather emphasize the importance of process implementation and continual process

improvement (Jianguo et al., 2008; McManus & Wood-Harper, 2007b).

Waterfall-based methodologies. Participants referenced waterfall-based

methodologies as the most successful 6 times in the responses. Participants noted

waterfall approaches are successful when properly implemented. Successful waterfall

implementations require effective communication and team interaction to assure success

for development programs.

The waterfall model provides a sequence of phases for software development

encompassing design, development, and requirement analysis (Harris et al., 2007;

www.manaraa.com

156

Larman & Basili, 2003). Each stage implements a complete phase of the development life

cycle such as design, code, test, and implementation (Harris et al.). Once a stage is

completed, the team moves to the next stage of development. Each stage is completed

before proceeding into the next development phase. In this approach, all phases are

completed before the product is available for testing and evaluation (Harris et al.). In this

method the approach to software development is highly structured and centered on

completing individual milestones prior to full project completion (Harris et al., 2007;

Sommerville, 2007).

Emerging Theory for Software Development Processes

Analysis of data collected for questions 8, 9, and 10 resulted in four themes

related to leadership processes for successful software development programs.

Interpretation of the resulting themes revealed an emerging theory related to the open

systems theory of environment, resources, and processes. Participant views revealed

software development programs result in successful outcomes through application of

defined software processes and procedures.

Themes derived from the data revealed the four prominent software development

processes of agile, iterative, CMM/CMMI, and waterfall support successful program

outcomes. Following one of these processes or methodologies results in successful

software development. The research data revealed these four approaches are considered

the most effective when applied to software development programs.

The software development processes provide the guidelines for product design,

development, and implementation. Applying approaches identified as effective in

previous programs can increase program success. Developing a collection of effective

www.manaraa.com

157

approaches for selection supports development of diverse products in multiple

environments. The collection of effective processes provides leadership with a set of

approaches for application depending on the type of product and goals for the software

program. Figure 9 presents emerging theory development for the process component of

the open system theoretical framework.

Figure 9. Process component for emerging leadership theory.

Investigation of the secondary research questions resulted in the identification of software

processes contributing to successful program development. Leadership environment,

software resources, and software processes provide the components necessary for

successful software development.

Theory for Effective Leadership for Software Development Programs

This qualitative research study investigated the leadership practices,

characteristics, and approaches contributing to successful software development

www.manaraa.com

158

programs. Analysis of the participant responses resulted in the identification of five

themes related to leadership environment, four themes related to resources, and four

themes related to software processes. Emerging theory for each of the components of the

open system paradigm revealed core themes for environment, resources, and processes.

The individual theories for each of these components can be combined into a theory on

the environment, resources, and process required for successful software development

programs.

Question 10 of the study investigated participant views on development

methodologies that are ineffective. For this question, respondents did not identify specific

ineffective processes; instead participants stated the issue is related to management of

programs and not specific processes applied. Participants stated the software

methodology is not the reason for program failure, rather ineffective management results

in program failure. Several participants noted any process can be successful with

effective leadership. Additionally, failures of programs are not the result of ineffective

processes, but rather the result of ineffective management.

Respondent views on the importance of management approach provide the

foundation for the software development leadership theory. The responses indicate

processes and resources provide the framework for successful program approaches and

effective leadership is the key to success. Emerging theory for the environment, resource,

and process components can be integrated to develop a theory on effective software

leadership.

Effective software leadership begins with establishment of an environment

encouraging individual, team, and organizational success. The leadership theory

www.manaraa.com

159

identifies the critical components of communication, teamwork, empowerment,

intelligence, and leading by example are required to establish an effective environment

for software development. These components provide the foundation for successful

leadership. Without an effective environment, the application of process and resources

will not result in successful software development. The foundation of the theory is the

establishment of an effective environment.

Establishing an effective environment for software development is only part of

the theory of successful leadership. Along with the environment, the framework for

success must be established. The framework identifies resources and processes essential

to successful development. The software resources provide a collection of essential

techniques and components required for program success. Requirements management,

established processes, effective planning, and adequate testing are essential to achieving

program success. Leadership for software development must maintain awareness of

effective software resources for development. Application of selected resources supports

achievement of objectives and development of successful software products.

Establishing a successful environment and defining resources for success provide

two dimensions of the leadership theory. The third area is the identification of effective

processes. The discipline of software engineering contains numerous approaches and

processes. Application of the appropriate processes supports successful software

development. Identification of approaches resulting in success on previous programs

provides a collection of methodologies for leadership application. The identified

approaches resulting in successful initiatives include iterative, agile, waterfall, and

www.manaraa.com

160

CMM/CMMI methodologies. The collection of processes provides leadership with a set

of methods for application.

 The three components are environment, resource, and processes are combined

into a model for successful software development leadership. The three components work

together to provide leadership with an integrated set of concepts and methodologies

supporting development of reliable and quality software. The environment component

establishes a foundation for increased productivity and performance. The resource and

process components provide a set of techniques supporting successful software

development. Leadership achieves success in software through integration and

application of the identified techniques and processes. Figure 10 provides the theory

developed from the data and theoretical framework of open systems.

CMM/CMMI
Processes

Figure 10. Theory for successful software development leadership.

www.manaraa.com

161

 The software engineering leadership theory emphasizes the importance of the

leadership environment for success. Environment provides the foundation for successful

project approaches. The components of resource and process provide the framework for

performing software development in the established leadership environment. With

successful management and leadership approaches, the applied resources and processes

contribute to program success.

Uniqueness of Findings

This qualitative grounded theory study resulted in the development of a theory for

successful software engineering leadership. Analysis of the data revealed key concepts

for leadership environment, software resources, and software processes. The leadership

environment identifies five critical areas for success. These areas are not unique to the

software engineering field but reflect critical components for leadership success

identified in previous leadership theory and program management methods. Participant

views and perceptions did not identify unique leadership approaches required for

software engineering. The critical components for success identified for leadership,

program management, and change management initiatives are similar to the leadership

environment components identified in this study.

The unique components for software leadership are in the integration of resources

and processes. Identifying process for software success alone is not sufficient, the

processes and critical software resource areas must be integrated into the program

leadership philosophy. Selecting the appropriate combination of processes and assuring

the leadership environment provides the foundation for success throughout the software

life cycle provides the combination of attributes for success.

www.manaraa.com

162

Limitations

The study scope was limited to research and development organizations in

Alabama and the study results reflect individual perceptions and opinions based on the

operations in the localized area, economic impacts, and job stability. The study did not

generalize the results to varying populations or geographic locations. The findings of the

study are not generalized to the population but rather are applicable to a particular

phenomenon (Bogdan & Biklen, 2007).

The study was also limited by the use of an Internet interview questionnaire to

collect participant responses. The electronic interview questionnaire provided data from

participants but did not support additional probing questions. The responses provided

were the only data available for analysis.

Implications

 The development of complex software applications requires leadership supporting

the software development life cycle (Sommerville, 2007). Successful software

development requires implementation of an innovative and creative environment for

success. Software resides in many products used by consumers (Stackpole, 2008) and

advanced applications (Schneidewind, 2007). The development of software applications

represents significant investments for organizations. Assuring successful program

development through effective leadership results in improved proficiency, enhanced

performance, and increased profits.

Leadership for software engineering programs strives to provide products that

meet consumer and organizational requirements. Identification of effective leadership

approaches and software processes can result in improved software development

www.manaraa.com

163

programs (Tesch et al., 2007). Software development organizations require effective

leadership for development programs to support consumer demands, industry standards,

and organizational objectives (Hadar & Leron, 2008; King, 2007; Schneidewind, 2007).

The success of software development programs can be improved through the

application of effective leadership approaches. Implementing leadership theories and

models results in improved program success. The leadership theory for successful

software development provides a model for establishing an effective environment and

defining required software resources and processes. This approach provides a technique

for successful software development leadership.

This qualitative grounded theory study investigated leadership and software

development practices for successful programs. Participant views and perspectives on

software leadership resulted in the identification of leadership theory for software

development. Effective leadership environments provide communication, teamwork,

experience, empowerment, and leadership by example. Software resources and processes

for success encompass requirements management, implemented processes, effective

planning, and adequate testing. Integrating effective leadership attributes and software

development approaches results in successful software development.

The data analysis resulted in the identification of common themes for software

development leadership. The identified themes are also key drivers for leadership and

change management initiatives and are not specific to the field of software engineering.

Successful leadership for software engineering does not require unique approaches to

leadership. The results indicate sound leadership practices contribute to successful

projects and do not require unique approaches for the field of software engineering. To

www.manaraa.com

164

improve the performance and success of software development initiatives, executive

management should focus on developing effective leaders following established

leadership concepts. Software engineering does not require unique approaches for

leadership but rather, effective leadership supports successful software engineering.

The research results indicate improvement in software development performance

requires the application of a combination of effective resources, procedures, and

processes. Applying an individual approach may improve a specific area of software

development but continued success for the software program requires application of

several processes and procedures throughout the software life cycle. Success in software

development requires a combination of successful leadership, procedures, process, and

approaches. The research did not identify a best approach instead the research indicated a

combination of approaches throughout the lifecycle resulted in improved program

performance.

The research study investigated views from leadership and software development

experts related to software development programs and processes. The results present

unexpected results for leadership and software processes. Surprising results from the

study are: (a) failure is a result of leadership not processes, (b) no discussion of model

driven development, (c) waterfall methodology in use at research organization, (d)

CMM/CMMI not a major theme.

A predominant theme in the data is the importance of leadership for successful

software development. Question 10 investigated participant view on ineffective software

development processes. The major response for this question centered on effective

www.manaraa.com

165

leadership. Participants stated leadership is the key to successful software development

not processes.

In question 11, participants were given the opportunity to provide any additional

comments on leadership and software engineering. Respondents emphasized the

importance of effective leadership over process. The approaches and methodologies

applied are not the cause of software failure. Participant views revealed software failures

are the result of inadequate or ineffective leadership.

Model driven development is a predominant methodology for software

development. Models define the system product at each stage of development resulting in

graphical representations for implementation (Pressman, 2010). This approach is used

throughout the selected research organization for software development. However, only

one response included discussions of model driven development. In discussions on

ineffective methodologies, participant 28 noted experience with model driven

development resulting in software failure. Model driven development approaches or

derivatives were not included in other participant responses.

The waterfall methodology emerged in the 1970s as an approach to meet stringent

government contracting requirements for software development (Harris et al., 2007;

Larman & Basili, 2003). The rigid and disciplined approached to software engineering

through the waterfall methodology resulted in experts favoring more fluid and innovative

methods (Harris et al.; Sommerville, 2007).

Responses to the interview questionnaire indicate the waterfall method is still in

use at the selected research organizations. Participants provided positive responses on the

waterfall methodology seven times and negative responses eight times. The responses

www.manaraa.com

166

indicate mixed results on the success of waterfall methodologies. Further research is

needed to identify the approaches that result in successful programs when the waterfall

methodology is applied. The success of waterfall methodologies may depend on the

selected implementation, planning, and leadership.

The selected organization for the research study has attained a CMMI Level IV

rating. Participant responses were expected to include information on CMM/CMMI

approaches and methodologies as a major theme due to the familiarity and predominance

in the organization. However, for the 71 participants only seven provided positive

comments and two provided negative comments on CMM/CMMI. This response

indicates the CMM/CMMI methodology is not a common approach in the organization.

The application of this methodology may be successful if combined with an effective

leadership environment and software resource concepts.

Recommendations

This study investigated leadership characteristics and software development

processes that contribute to successful programs.

Recommendations for Leadership

The data analysis resulted in the identification of successful approaches for

leadership, software resources, and software processes. Recommendations to improve

software development efforts are:

1. Integration of leadership training programs for key software engineering

experts. Understanding the criticality of leadership processes supports

an integrated approach to software life cycle efforts.

www.manaraa.com

167

2. Development of a software resource and software process tool kit to

achieve a collective set of successful processes. Define specific

activities that contribute to success and provide recommendations for

types of programs and phases for application.

3. Develop lessons learned and share results throughout the organization.

Significant information is obtained from past performance of successful

and failed programs. Provide a repository for lessons learned to support

improvement in current initiatives and eliminate know problematic

approaches.

4. Incorporate leadership training in software engineering college

curricula. Understanding the phases, processes, and approaches for

software engineering is not sufficient to assure success. Software

engineers must also understand the importance of effective leadership

approaches for software efforts. Providing leadership training early in

the development of future software engineers may improve the success

rate of software development efforts.

Recommendations for Future Research

The study developed qualitative grounded theory on successful leadership

environments, resources, and processes for success. Qualitative research generates theory

from emerging themes and may be enhanced through a quantitative study on a similar

topic (Glaser & Strauss, 2007). The study results may be further enhanced through a

quantitative study investigating similar concepts.

www.manaraa.com

168

The research study investigated views and perceptions from leadership and

software developers at one organization. Future research may enhance the results through

investigation of additional perspectives. Suggestions for future research include:

1. A research study that investigates multiple organizations to obtain

different perspectives outside of the organizational paradigm.

2. A research study at an organization without a CMM/CMMI rating. The

identification of successful leadership approaches and software

development processes may result in additional information on effective

environments, resources, and processes.

3. A research study investigating the leadership and software processes

applied during development of different criticality levels. Software

processes and leadership approaches may be different when developing

software considered safety critical versus non-safety critical.

Summary

The purpose of this qualitative grounded theory study was to investigate

leadership and development practices applied to software development programs to

determine which processes are effective, beneficial, and applicable to achieving

successful program outcomes. The study explored the experiences and unique

perceptions of leaders and software developers involved in software development

programs. The selected research organization provided participants with experience and

backgrounds in leadership and software engineering. An electronic interview

questionnaire obtained participant responses on effective leadership approaches and

software development processes.

www.manaraa.com

169

The interview questionnaire investigated the primary research question on

leadership practices and obtained views and perceptions on successful leadership

characteristics and approaches for software development programs. Data coding and

analysis resulted in five common themes for successful leadership: (a) effective

communications, (b) fostering teamwork, (c) experience and intelligence, (d)

empowerment of individuals, and (e) leadership by example. Data analysis resulted in

four themes for leadership resources: (a) requirements definition and management, (b)

established procedures and processes, (c) effective planning and scheduling, and (d)

adequate testing. Four themes emerged on the required processes for successful software

development: (a) agile development methodologies, (b) iterative or incremental

development, (c) CMM/CMMI processes, and (d) waterfall-based methodologies.

Review of the themes provided in the data resulted in the development of a

leadership theory for successful software development in the open system framework.

Software processes and resources provide the framework for successful program

approaches and effective leadership is the key to success. The themes on environment,

resource, and process components are integrated to develop a theory on effective

software leadership.

The foundation for effective leadership is the established environment for success.

The leadership theory integrates the critical components for implementing a successful

software development environment. The leadership theory stresses the importance of

effective communication, fostering teamwork, empowerment, intelligence, and leadership

by example. Integrating these components provides a foundation for development of an

effective leadership environment for successful software development.

www.manaraa.com

170

The leadership theory implements the software resource component to support a

framework for effective development. The critical resources for software development

implement approaches for requirements management, process application, program

planning, and system testing. Application of these software resources results in improved

performance and enhanced product quality. The leadership theory integrates the resource

component to provide leadership with a set of approaches for performing successful

software development.

The third component of the leadership theory identifies successful software

development processes. The processes of incremental development, agile methodologies,

CMM/CMMI philosophy, and waterfall development provide a set of approaches for life

cycle development. The process component of the leadership theory provides leadership

identified methodologies for success. Leadership application of the identified approaches

provides a framework for successful development of software products.

The leadership theory for successful software development integrates techniques

for establishing an effective environment, implementing software resources, and applying

software processes to support software programs. Application of the developed theory

and identified techniques can result in improved product development and increased

product quality. Leadership environment provides the critical capabilities, attributes, and

concepts for successful project development. The resources and processes support

leadership in achieving development objectives.

Developing new approaches and applying new theories can improve the existing

software development success rate. An effective leadership approach to software

development results in increased performance, improved productivity, and enhanced user

www.manaraa.com

171

satisfaction. The leadership theory fosters improved performance through the integration

of environment, resources, and processes.

Organizations can apply the leadership theory for successful software

development to establish effective environments, implement successful processes, and

incorporate efficient resources. The leadership theory identifies a set of components and

concepts that when integrated and applied can result in improved software development

performance. Implementation of the theory for successful software development

leadership can be used to improve organizational performance through enhanced

leadership and software development approaches.

www.manaraa.com

172

REFERENCES

Adams, T. L. (2008). Interprofessional relations and the emergence of a new profession:

Software engineering in the United States, United Kingdom, and Canada.

Sociological Quarterly, 48(3), 507-532. doi: 10.111/j.1533-8525.2007.00087.x

Agerfalk, P. J., & Fitzgerald, B. (2006). Flexible and distributed software processes: Old

petunias in new bowls. Communications of the ACM, 49(10), 27-34. Retrieved

September 3, 2009, from EBSCOhost database.

Agrawal, M., & Chari, K. (2007). Software effort, quality, and cycle time. A study of

CMM level 5 projects. IEEE Transactions on Software Engineering, 33(3), 145-

156. Retrieved August 8, 2009, from ProQuest database.

Aken, A. (2008). CHUNK: An agile approach to the software development life cycle.

Journal of Internet Commerce, 7(3), 313-338. Retrieved January 24, 2010, from

EBSCOhost database.

Alam, M., Hafner, M., & Breu, R. (2008). Constraint based role based control in the

SECTET-framework. Journal of Computer Security, 16(2), 223-260. Retrieved

August 28, 2009, from EBSCOhost database.

Al-Qutaish, R. E., & Al-Sarayreh, K. (2008). Software process and product ISO

standards: A comprehensive survey. European Journal of Scientific Research,

19(2), 289-303. Retrieved August 25, 2009, from EBSCOhost database.

Amiri, S. R. S., Kavousy, E., & Azimi, S. Y. (2010). The role of cultural strategic

planning in increasing organizational productivity, development and perfection.

European Journal of Social Sciences, 15(2), 69-74.

www.manaraa.com

173

Aoumeur, N. (2008). Stepwise rigorous development of distributed agile information

systems: From UML-diagrams to component-based Petri nets. Enterprise

Information Systems, 2(2), 125-160. doi: 10.1080/1751570801927403

Awazu, Y., Baloh, P., Desouza, K. C., Wecht, C. H., Kim, j., & Jha, S. (2009).

Information – Communication technologies open up innovation. Research

Technology Management, 52(1), 51-58. Retrieved March 7, 2009, from

EBSCOhost database.

Babbie, E. (2010). The practice of social research (12th ed.). Belmont, CA: Wadsworth.

Balasubramanian, K., Gokhale, A., Lin, Y., Ahang, J., & Gray, J. (2006). Weaving

deployment aspects into domain-specific models. International Journal of

Software Engineering and Knowledge Engineering, 16(3), 402-424. Retrieved

August 28, 2009, from EBSCOhost database.

Baillie, L., Ford, P., Gallagher, A., & Wainwright, P. (2009). Nurses’ views on dignity

in care. Nursing Older People, 21(8), 22-29. Retrieved January 21, 2010, from

EBSCOhost database.

Basili, V. R., Cruzes, D., Carver, J. C., Hochstein, L. M., Hollingsworth, J. K.,

Zelkowitz, M. V., et al. (2008). Understanding the high-performance computing

community: A software engineer’s perspective. IEEE Software, 25(4), 29-36.

Retrieved August, 28, 2009, from ProQuest database.

Basili, V. R., & Zelkowitz, M. V. (2007). Empirical studies to build a science of

computer science. Communications of the ACM, 50(11), 507-532. Retrieved

October 21, 2009, from EBSCOhost database.

www.manaraa.com

174

Bass, B. M. (1999). Two decades of research and development in transformational

leadership. European Journal of Work and Organizational Psychology, 8(1), 9-

32. doi: 10.1080/135943299398410

Beadell, B. (2009). CMMI as contemporary iron case: A grounded analysis from the

perspective of practicing engineers in defense engineering. (Doctoral

dissertation, University of St. Thomas Minnesota, 2009). Retrieved March 6,

2010, from ProQuest Dissertations and Theses: Full Text. (Publication No.

AAT3388217).

Bell, A. E. (2008). From the front lines software development amidst the whiz of silver

bullets. Communications of the ACM, 51(8), 22-24. Retrieved October 20, 2009,

from EBSCOhost database.

Benediktsson, O., Dalcher, D., & Thorbergsson, H. (2006). Comparison of software

development life cycles: A multiproject experiment. IEE Proceedings - Software,

153(3), 87-101. doi: 10.1049/ip-sen:20050061

Berg, B. L. (2009). Qualitative research methods for the social sciences (7th ed.).

Boston, MA: Allyn and Bacon.

Bernstein, P. A., & Haas, L. M. (2008). Information integration in the enterprise.

Communications of the ACM, 51(9), 72-79. doi: 10.1145/1378727.1378745

Bharadwaj, S. S., & Saxena, K. B. (2006). Impacting the process of global software

teams: A communication technology perspective. VISION - The Journal of

Business Perspective, 10(4), 63-75. Retrieved August 20, 2008, from

EBSCOhost database.

www.manaraa.com

175

Bird, C., Nagappan, N., Devanbu, P., Gall, H., & Murphy, B. (2009). Does distributed

development affect software quality? An empirical case study of windows vista.

Communications of the ACM, 52(8), 85-93. doi: 10.1145/1536616.1536639

Bixenman, M. L. (2007). Leading open innovation across global strategic alliances: A

grounded theory study. (Doctoral dissertation, University of Phoenix, 2008).

Retrieved March 9, 2010, from ProQuest Dissertations and Theses @ University

of Phoenix. (Publication No. AAT 3289586).

Bloch, D. P. (2008). Complexity, connections, and soul work. Catholic Education: A

Journal of Inquiry and Practice, 11(4), 543-554. Retrieved June 18, 2009, from

EBSCOhost database.

Boehm, B. W. (1988). A spiral model of software development and enhancement.

Computer, 21(5), 61-72. Retrieved August 26, 2009, from IEEE Computer

Society Digital Library database.

Boehm, B. W. (2006). A view of 20th and 21st century software engineering.

Proceedings of the 28th International Conference on Software Engineering, 12-

29. Retrieved August 20, 2009, from ACM Digital Library database.

Boehm, B. W., & Valerdi, R. (2008). Achievements and challenges in Cocomo-based

software resource estimation. IEEE Software, 25(5), 74-83. Retrieved July 31,

2009, from ProQuest database.

Boerner, S., Eisenbeiss, S. A., & Griesser, D. (2007). Follower behavior and

organizational performance: the impact of transformational leaders. Journal of

Leadership and Organizational Studies, 13(3), 15-26. Retrieved September 6,

2009, from EBSCOhost database.

www.manaraa.com

176

Bogdan, R. C., & Biklen, S. K. (2007). Qualitative research for education: An

introduction to theory and methods (5th ed.). New York: Pearson Education, Inc.

Bonner, N. A. (2008). Acceptance of systems development methodologies: Testing a

theoretically integrated model. (Ph. D. dissertation, The University of Texas at

Arlington, 2008). Retrieved March 6, 2010, from ProQuest Dissertations and

Theses: Full Text. (Publication No. AAT3320052).

Booch, G. (2008). Morality and the software architect. IEEE Software, 25(1), 8-9.

Retrieved August 6, 2009, from ProQuest database.

Bose, I. (2008). Lessons learned from distributed agile software projects: A case-based

analysis. Communication of the Association for Information Systems, 23, 619-

632. Retrieved September 3, 2009, from EBSCOhost database.

Boseman, G. (2008). Effective leadership in a changing world. Journal of Financial

Service Professionals, 62(3), 36-38. Retrieved September 8, 2009, from

EBSCOhost database.

Boynton, B. C. (2007). Identification of process improvement methodologies with

application in information security. Proceedings of the 4th Annual Conference

on Information Security Curriculum Development, 28. Retrieved August 31,

2009, from ACM Digital Library database.

Brown, A. W., & McDermid, J. A. (2008). The art and science of software architecture.

International Journal of Cooperative Information Systems, 16(3/4), 439-466.

Retrieved August 9, 2009, from EBSCOhost database.

www.manaraa.com

177

Cagle, W. (2007). Real change leadership in twenty-first century missions context.

Asian Journal of Pentecostal Studies, 10(1), 63-77. Retrieved September 8,

2009, from EBSCOhost database.

Calabrese, D. (2008). Project management best practices (00011206). Faulkner

Information Services. Retrieved from Faulkner’s Advisory on Computers and

Communications Technologies

Cantor, M. (2002). Software leadership: A guide to successful software development.

Indianapolis, IN: Addison-Wesley.

Carnegie Mellon University Software Engineering Institute. (2006). CMMI for

development, version 1.2: Improving processes for better products. (CMU/SEI-

2006-TR-008 ESC-TR-2006-008). Pittsburgh, Pennsylvania: Author.

Cerpa, N., & Verner, J. M. (2009). Why did your project fail? Communications of the

ACM, 52(12), 130-134. doi:10.1145/1610252.1610286

Chan, Y. H., Taylor, R. R., & Markham, S. (2008). The role of subordinates’ trust in a

social exchange-driven psychological empowerment process. Journal of

Managerial Issues, 20(4), 444-467. Retrieved September 8, 2009, from

EBSCOhost database.

Charmaz, K. (2006). Constructing grounded theory: A practical guide through

qualitative analysis. Thousand Oaks, CA: Sage Publications Inc.

Chatterjee, S. (2008). Software engineering practice in computer science courses. 19th

Australian Conference on Software Engineering, 611-616. doi:

10.1109/ASWEC.2008.58

www.manaraa.com

178

Claiborne, C. B. (2007). Innovation: A necessity of the new global business paradigm.

International Journal of Business Research, 7(6), 73-76. Retrieved June 17,

2009, from EBSCOhost database.

Clutterbuck, P., Rowlands, T., & Seamons, O. (2009). A case study of SME web

application development: Effectiveness via agile methods. Electronic Journal of

Information Systems, 12(1), 13-26. Retrieved January 24, 2010, from

EBSCOhost database.

Colbert, A. E., Kristof-Brown, A. L., Bradley, B. H., & Barrick, M. R. (2008). CEO

transformational leadership: The role of goal importance congruence in top

management teams. Academy of Management Journal, 51(1), 81-96. Retrieved

January 24, 2010, from EBSCOhost database.

Corbin, J., & Strauss, A. (2008). Basics of qualitative research (3rd ed.). Thousand

Oaks, CA: Sage Publications.

Creswell, J. W. (2008). Educational research: Planning, conducting, and evaluating

quantitative and qualitative research (3rd ed.). Upper Saddle River, NJ: Pearson.

Cusumano, M. A. (2008). Managing software development in globally distributed

teams. Communications of the ACM, 51(2), 15-17. Retrieved October 20, 2008,

from EBSCOhost database.

Dalcher, D., & Benediktsson, O. (2006). Managing software development project size:

Overcoming the effort-boxing constraint. Project Management Journal, 37(2),

51-58. Retrieved July 30, 2009, from EBSCOhost database.

Denning, S. (2007). The secret language of leadership. San Francisco: Jossey-Bass.

www.manaraa.com

179

Desouza, K. C., Awazu, Y., & Baloh, P. (2006). Managing knowledge in global

software development efforts: Issues and practices. IEEE Software, 23(5), 30-37.

Retrieved August 25, 2009, from ProQuest database.

Dey, P. K., Kinch, J., & Ogunlana, S. O. (2007). Managing risk in software

development. Industrial Management and Data Systems, 107(2), 284-303. doi:

10.1108/02635570710723859

Douglas, I. (2006). Issues in software engineering of relevance to instructional design.

TechTrends, 50(5), 28-35. Retrieved November 13, 2008, from ProQuest

database.

Early, M. M. (2006). Improving the success rate of software development projects.

(Ph.D. dissertation, Northcentral University, 2006). Retrieved March 6, 2010,

from ProQuest Dissertations and Theses: Full Text. (Publication No.

AAT3200346).

Ebert, C. (2008). A brief history of software technology. IEEE Software, 25(6), 22-25.

Retrieved August 20, 2009, from IEEE Computer Society Digital Library

database.

Edwards, C. (2003). Model development. IEE Review, 49(8), 42-45. Retrieved August

28, 2009, from EBSCOhost database.

El Emam, K. E., & Koru, A. G. (2008). A replicated survey of IT software project

failures. IEEE Software, 25(5), 84-90. Retrieved November 17, 2008, from

ProQuest database.

www.manaraa.com

180

Eldai, O. I., Hussan, A., Ali, M. H., & Raviraja, S. (2008). Towards a new methodology

for developing web-based systems. Proceedings of World Academy of Science,

Engineering and Technology, 36, 190-195. Retrieved January 23, 2010, from

EBSCOhost database.

Elfatatry, A. (2007). Dealing with change: Components versus services.

Communications of the ACM, 50(8), 35-39. Retrieved August 25, 2009, from

EBSCOhost database.

Erdogmus, H. (2008). Essentials of software process. IEEE Software, 25(4), 4-7.

Retrieved August 25, 2009, from ProQuest database.

Erdogmus, H., & Williams, L. (2003). The economics of software development by pair

programmers. Engineering Economist, 48(4), 283-319. Retrieved June 6, 2009,

from EBSCOhost database.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D. (2007). Team

knowledge and coordination in geographically distributed software development.

Journal of Management Information Systems, 24(1), 135-169. doi:

10.2753/MIS0742-1222240104

Fichten, C. S., Ferraro, V., Asuncion, J. V., Chwojka, C., Barile, M., Nguyen, M. N., et

al. (2009). Disabilities and e-learning problems and solutions: An exploratory

study. Educational Technology and Society, 12(4), 241-256. Retrieved January

21, 2010, from EBSCOhost database.

Fruchter, R., Swaminathan, S., Boraiah, M., & Upadhyay, C. (2007). Reflection in

interaction. AI and Society, 22, 211-223. doi: 10.1007/s00146-007-0121-6

www.manaraa.com

181

Galin, D., & Avrahami, M. (2006). Are CMM program investments beneficial?

Analyzing past studies. IEEE Software, 23(6), 81-87. Retrieved August 25, 2009,

from ProQuest database.

Gefen, D., Zviran, M., & Elman, N. (2006). What can be learned from CMMI failures?

Communications of AIS, 17, 2-28. Retrieved April 4, 2008, from EBSCOhost

database.

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for

qualitative research. Chicago: Aldine.

Glaser, B., & Strauss, A. (2007). The discovery of grounded theory: Strategies for

qualitative research. Piscataway, NJ: Aldine Transaction.

Glass, R. L. (2008). One man’s quest for the state of software engineering’s practice

analyzing researchers’ finding of software practitioners’ activities.

Communications of the ACM, 50(5), 21-23. Retrieved August 20, 2009, from

EBSCOhost database.

Gorry, B. (2008). Concerns regarding the adoption of the model driven architecture in

the development of safety critical avionics applications. Proceedings of World

Academy of Science, Engineering and Technology, 28, 87-95. Retrieved April

29, 2009, from EBSCOhost database.

Gottesdiener, E. (2008). Good practices for developing user requirements. Journal of the

Quality Assurance Institute, 22(3), 15-18. Retrieved from EBSCOhost database.

www.manaraa.com

182

Goztas, A., Baytekin, E. P., & Kamanlioglu, E. B. (2009). Six sigma approach in

business enterprises: evidence from Schneider Electric Turkey - An assessment

in terms of internal organizational communication and corporate culture.

International Journal of Management Perspectives, 1(3), 45-71. Retrieved

August 31, 2009, from EBSCOhost database.

Greenwood, P. B., & Kanters, M. A. (2009). Talented male athletes: Exemplary

character or questionable characters? Journal of Sport Behavior, 32(3), 298-324.

Retrieved January 21, 2010, from EBSCOhost database.

Guntamukkala, V., Wen, H. J., & Tarn, J. M. (2006). An empirical study of selecting

software development life cycle models. Human Systems Management, 25(4),

265-278. Retrieved January 24, 2010, from EBSCOhost database.

Hadar, I., & Leron, U. (2008). How intuitive is object-oriented design. Communications

of the ACM, 51(5), 41-46. Retrieved October 20, 2009, from EBSCOhost

database.

Hadar, I., Sherman, S., & Hazzan, O. (2008). Learning human aspects of collaborative

software development. Journal of Information Systems Education, 19(3), 311-

319. Retrieved July 28, 2009, from EBSCOhost database.

Harris, M., Aebischer, K., & Klaus, T. (2007). The whitewater process: Software

product development in small IT business. Communications of the ACM, 50(5),

89-93. Retrieved August 25, 2009, from EBSCOhost database.

Hashmi, S. I., & Baik, J. (2007). Software quality assurance in XP and spiral - A

comparative study. Fifth International Conference on Computational Science

and Applications, 367-374. doi: 10.1109/ICCSA.2007.65

www.manaraa.com

183

Haustein, S., & Pleumann, J. (2005). A model-driven runtime environment for web

applications. Software and Systems Modeling, 4(4), 443-458. doi:

10.1007/s10270-005-0093-2

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J. P., & Margaria, T. (2008).

Software engineering and formal methods. Communications of the ACM, 51(9),

54-59. doi: 10.1145/1378727.1378742

Horn, C. (2009). Why has software been so difficult to write well? Engineers Journal,

63(9), 476-479. Retrieved January 22, 2010, from EBSCOhost database.

Iacob, I. M., & Constantinescu, R. (2008). Testing. First step towards software quality.

Journal of Applied Quantitative Methods, 3(3), 241-253. Retrieved July 1, 2009

from EBSCOhost database.

Ilies, R., Judge, T., & Wagner, D. (2006). Making sense of motivational leadership: The

trail from transformational leaders to motivated followers. Journal of Leadership

and Organizational Studies, 13(1), 1-22. Retrieved September 6, 2009, from

EBSCOhost database.

Institute of Electrical and Electronics Engineers. (2004). Guide to the software

engineering body of knowledge. Los Alamitos, CA: Author.

International Organization for Standardization. (2004a). ISO/IEC 15504-2:2004:

Information technology - process assessment - part 2: performing an assessment.

(ISO/IEC 15504-2:2004). Geneva, Switzerland: Author.

International Organization for Standardization. (2004b). ISO/IEC 15504-1:2004

Information technology process assessment part 1: concepts and vocabulary.

(ISO/IEC 15504-1:2004). Geneva, Switzerland: Author.

www.manaraa.com

184

Jain, A. (2007). A value-based theory of software engineering. (Ph. D. dissertation,

University of Southern California, 2007). Retrieved March 6, 2010, from

ProQuest Dissertations and Theses: Full Text. (Publication No. AAT3311031).

Jakimi, A., & Elkoutbi, M. (2009). A new approach for UML scenario engineering.

International Review on Computers and Software, 4(1), 88-95. Retrieved August

28, 2009, from EBSCOhost database.

Jianguo, L., Jinghui, L., & Hongbo, L. (2008). Research on software process

improvement model based on CMM. Proceedings of World Academy of Science:

Engineering and Technology, 29, 368-371. Retrieved October 20, 2008, from

EBSCOhost database.

Johnson, J., Boucher, K. D., Connors, K., & Robinson, J. (2001). Collaboration:

Development and management collaborating on project success. The Software

Magazine. Retrieved from

http://www.softwaremag.com/archive/2001feb/CollaborativeMgt-II.html

Johnson, M. (2008). Multi-project staffing: An agile based framework. (D.P.S.

dissertation, Pace University, 2008). Retrieved March 6, 2010, from ProQuest

Dissertations and Theses: Full Text. (Publication No. AAT3337583).

Johnson-Cramer, M. E., Parise, S., & Cross, R. L. (2007). Managing change through

networks and values. California Management Review, 49(3), 85-109. Retrieved

June 12, 2008, from EBSCOhost database.

Jones, C. (2008). Geriatric issues of aging software. Journal of the Quality Assurance

Institute, 22(2), 21-27. Retrieved August 7, 2009, from EBSCOhost database.

www.manaraa.com

185

Keller, R. D., Marose, R. A., & Schuessler, T. (2009). Six sigma project - job tracking

system. Proceedings for the Northeast Region Decision Sciences Institute

(NEDSI), 437-442. Retrieved August 31, 2009, from EBSCOhost database.

Kendall, R., Fisher, D., Henderson, D., Carver, J. C., Mark, A., Post, D., et al. (2008).

Development of a weather forecasting code: A case study. IEEE Software, 25(4),

59-65. Retrieved August 20, 2009, from ProQuest database.

Kenett, R. S., & Baker, E. R. (2010). Process improvement and CMMI for systems and

software. Boca Raton, FL: Taylor and Francis Group, LLC.

Kerzner, H. (2009). Project management: A systems approach to planning, scheduling,

and controlling (10th ed.). Hoboken, NJ: John Wiley & Sons, Inc.

Keston, G. (2008). Agile software development (00011494). Faulkner Information

Services. Retrieved from Faulkner’s Advisory on Computer and

Communications Technologies

King, D. R. (2007). Balanced innovation management. Defense Acquisition Review

Journal, 150-169.

Kirova, V., Kirby, N., Kothari, D., & Childress, G. (2008). Effective requirements

traceability: Models, tools, and practices. Bell Labs Technical Journal, 12(4),

143-158. Retrieved August, 20, 2009, from EBSCOhost database.

Kneuper, R. (2009). CMMI: Improving software and system development processes

using capability maturity model integration (CMMI-DEV). Santa Barbara, CA:

Rocky Nook Inc.

www.manaraa.com

186

Kotlarsky, J., Oshri, H., & Willcocks, L. (2007). Social ties in globally distributed

software teams: beyond face-to-face meetings. Journal of Global Information

Technology Management, 10(4), 7-34. Retrieved September 3, 2009, from

EBSCOhost database.

Kruchten, P. (2008). Licensing software engineers. IEEE Software, 25(6), 35-37.

Retrieved August 8, 2009, from ProQuest database.

Landaeta, R. E. (2008). Evaluating benefits and challenges of knowledge transfer across

project. Engineering Management Journal, 20(1), 29-38. Retrieved July 4, 2009,

from EBSCOhost database.

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief

history. Computer, 36(6), 47-56. Retrieved August 26, 2009, from IEEE

Computer Society Digital Library database.

Lavrishcheva, E. M. (2008). Software engineering as a scientific and engineering

discipline. Cybernetics and Systems Analysis, 44(3), 324-332. Retrieved

November 10, 2008, from ProQuest database.

Lee, G., Delone, W., & Espinosa, J. A. (2006). Ambidextrous coping strategies in

globally distributed software development projects. Communications of the

ACM, 49(10), 35-40. Retrieved September 3, 2009, from EBSCOhost database.

Leedy, P. D., & Ormrod, J. E. (2005). Practical research: Planning and design (8th ed.).

Upper Saddle River, NJ: Pearson Education, Inc.

Lewis, L. K. (2006). Employee perspectives on implementation communication as

predictors of perceptions of success and resistance. Western Journal of

Communication, 70(1), 23-46. doi: 10.1080/10570310500506631

www.manaraa.com

187

Li, E. Y., Chen, H., & Lee, T. (2003). A longitudinal study of software process

management in Taiwan’s top companies. Total Quality Management, 14(5), 571-

590. doi: 10.1080/1478336032000053591

Lindbom, D. (2007). A culture of coaching: The challenge of managing performance for

long-term results. Organization Development Journal, 25(2), 101-106. Retrieved

December 12, 2008, from EBSCOhost database.

Linden, G., Ortega, R., & Hong, J. (2010). Software engineering, smartphones and

health systems, and security warnings. Communications of the ACM, 53(1), 16-

17. doi: 10.1145/1629175.1629181

Mahoney, M. S. (2008). What makes the history of software hard? IEEE Annals of the

History of Computing, 30(3), 8-18. Retrieved August 22, 2009, from IEEE

Computer Society Digital Library database.

Masood, S. A., Dani, S. S., Burns, N. D., & Backhouse, D. J. (2006). Transformational

leadership and organizational culture: The situational strength perspective.

Proceedings of the Institution of Mechanical Engineers - Part B - Engineering

Manufacture, 220(6), 941-949. doi: 10.1243/09544054JEM499

Mathew, E. G. (2008). Knowledge management progression, issues, and approaches for

organizational effectiveness in manufacturing industry: An implementation

agenda. ICFAI Journal of Knowledge Management, 6(1), 20-45. Retrieved May

6, 2009, from EBSCOhost database.

Mathew, V., & Kavitha, M. (2008). The critical knowledge transfer in an organization:

Approaches. ICFAI Journal of Knowledge Management, 6(4), 25-39. Retrieved

August 15, 2009, from EBSCOhost database.

www.manaraa.com

188

McCleaf, K. J. (2007). Sexual minority women, identity development, and acquisition of

academic success: A qualitative study. (Doctoral dissertation, University of

Phoenix, 2007). Retrieved January 21, 2010, from ProQuest Dissertations and

Theses @ University of Phoenix. (Publication No. AAT 3299235).

McManus, J., & Wood-Harper, T. (2007a). Software engineering: A quality

management perspective. The TQM Magazine, 19(4), 315-327. doi:

10.1108/09544780710756223

McManus, J., & Wood-Harper, T. (2007b). Understanding the sources of information

systems project failure. Management Services, 51(3), 38-43. Retrieved July 29,

2009, from EBSCOhost database.

McMillan, J. H., & Schumacher, S. (2006). Research in education: Evidence-based

inquiry (6th ed.). New York: Pearson Education, Inc.

Miller, D., & Desmarais, S. (2007). Developing your talent to the next level: Five best

practices for leadership development. Organization Development Journal, 25(3),

37-43. Retrieved December 12, 2007, from EBSCOhost database.

Miller, W. L. (2006). Innovation rules. Research Technology Management, 49(2), 8-14.

Retrieved August 18, 2009, from ProQuest database.

Mishra, D., & Mishra, A. (2008). Effective software review process for small and

medium enterprises. IET Software, 1(4), 132-142. Retrieved October 21, 2009,

from EBSCOhost database.

www.manaraa.com

189

Mizell, C., & Malone, L. (2007). A project management approach to using simulation

for cost estimation on large, complex software development projects.

Engineering Management Journal, 19(4), 30-36. Retrieved November 10, 2009,

from ProQuest database.

Mohtashami, M., Marlowe, T., Kirova, V., & Deek, F. P. (2006). Risk management for

collaborative software development. Information Systems Management, 23(4),

20-30. Retrieved November 20, 2008, from ProQuest database.

Monalisa, M., Daim, T., Mirani, F., Dash, P., Khamis, R., & Bhusari, V. (2008).

Managing global design teams. Research Technology Management, 51(4), 48-

59. Retrieved August 21, 2009, from EBSCOhost database.

Mukherjee, I. (2008). Understanding information system failures from the complexity

perspective. Journal of Social Sciences, 4(4), 308-319. Retrieved January 22,

2010, from EBSCOhost database.

Murray T. M. (2008). A grounded theory of U.S. Army installation realignment and

closure leadership characteristics. (Doctoral dissertation, University of Phoenix,

2008). Retrieved March 9, 2010, from ProQuest Dissertations and Theses @

University of Phoenix. (Publication No. AAT 3326209).

Nasution, M. F., & Weistroffer, H. R. (2009). Documentation in systems development:

A significant criterion for project success. 42nd Hawaii International

Conference on System Sciences, 1-9. Retrieved August 26, 2009, from IEEE

Computer Society Digital Library database.

www.manaraa.com

190

National Defense University. (2009). Strategic leadership and decision making.

Retrieved August 14, 2009, from

http://www.au.af.mil/au/awc/awcgate/ndu/strat-ldr-dm/cont.html

Neuman, W. L. (2003). Social research methods: Qualitative and quantitative

approaches (5th ed.). New York: Pearson Education Inc.

Neumann, P. G. (2008). Reflections on computer-related risks. Communications of the

ACM, 51(1), 78-80. Retrieved February 19, 2009, from EBSCOhost database.

Nevo, D., & Wade, M. R. (2007). How to avoid disappointment by design.

Communications of the ACM, 50(4), 43-48. Retrieved August 20, 2009, from

EBSCOhost database.

Nielsen, M. F. (2009). Interpretative management in business meetings. Journal of

Business Communication, 46(1), 23-56. doi: 10.1177/0021943608325752

Northouse, P. G. (2010). Leadership: Theory and practice (5th ed.). Thousand Oaks,

CA: Sage Publications, Inc.

Ogle, A. (2009). Making sense of the hotel guestroom. Journal of Retail and Leisure

Property, 8(3), 159-172. Retrieved January 21, 2010, from EBSCOhost database.

Peppard, J., Ward, J., & Daniel, E. (2007). Managing the realization of business benefits

from IT investments. MIS Quarterly Executive, 6(1), 1-11. Retrieved February

22, 2009, from EBSCOhost database.

Persichitte, K. A., Young, S., & Tharp, D. D. (1997). Conducting research on the

Internet: Strategies for electronic interviewing. Retrieved January 21, 2010,

from ERIC Document Reproduction Service No. ED409860.

www.manaraa.com

191

Persse, J. R. (2006). Process improvement essentials: CMMI, ISO 9001, six sigma.

Sebastopol, CA: O’Reilly Media Inc.

Peslak, A. R., Subramanian, G. H., & Clayton, G. E. (2008). The phases of ERP

software implementation and maintenance: A model for predicting preferred

ERP use. Journal of Computer Information Systems, 48(2), 25-33. Retrieved

August 17, 2009, from EBSCOhost database.

Pfleeger, S. L., & Atlee, J. M. (2010). Software engineering: Theory and practice (4th

ed.). Upper Saddle River, NJ: Prentice Hall.

Pino, F., Garcia, F., & Piattini, M. (2008). Software process improvement in small and

medium software enterprises: A systematic review. Software Quality Journal,

16(2), 237-252. doi: 10.1007/s11219-007-9038-z

Polkinghorne, D. E. (2005). Language and meaning: Data collection in qualitative

research. Journal of Counseling Psychology, 52(2), 127-145. doi: 10.1037/0022-

0167.52.2.137

Pozgaj, Q., Sertic, H., & Boban, M. (2007). Effective information systems development

as a key to successful enterprise. Management, 12(1), 65-86. Retrieved

December 7, 2008, from EBSCOhost database.

Pressman, R. S. (2010). Software engineering a practitioner’s approach (7th ed.). New

York: McGraw-Hill.

Probert, D., Hunt, F., Fraser, P., Fleury, A., & Holden, T. (2007). Sourcing software

content for manufactured products. Proceedings of the Institution of Mechanical

Engineers -- Part B -- Engineering Manufacture, 221(5), 809-820. doi:

10.1243/09544054JEM532

www.manaraa.com

192

QSR International. (2008). NVivo8. Retrieved October 31, 2010, from

http://www.qsrinternational.com/products_previous-products.aspx

Rajlich, V. (2006). Changing the paradigm of software engineering. Communications of

the ACM, 49(8), 67-70. Retrieved January 24, 2010, from EBSCOhost database.

Ramasubbu, N., Mithas, S., Krishan, M. S., & Kemerer, C. F. (2008). Work dispersion,

process-based learning, and offshore software development performance. MIS

Quarterly, 32(2), 437-458. Retrieved September 25, 2009, from EBSCOhost

database.

Ramesh, B., Cao, L., Mohan, K., & Xu, P. (2006). Can distributed software

development be agile? Communications of the ACM, 49(40), 41-46. Retrieved

September 3, 2009, from EBSCOhost database.

Rasulzadeh, S. (2008). Formal modeling and verification of software models.

Proceedings of World Academy of Science, Engineering and Technology, 32,

276-282. Retrieved August 17, 2009, from EBSCOhost database.

Rubinstein, D. (2007, March 1). Standish group report: There’s less development chaos

today. Software Development Times. Retrieved from

http://www.sdtimes.com/link/30247

Salinas, M. P. C., Prudhomme, G., & Brissaud, D. (2008). Requirement-oriented

activities in an engineering design process. International Journal of Computer

Integrated Manufacturing, 21(2), 127-138. doi: 10.1080/09511920701607816

Salkind, N. J. (2003). Exploring research (5th ed.). Upper Saddle River, NJ: Prentice

Hall.

www.manaraa.com

193

Sapienza, A. M. (2005). From the inside: Scientists’ own experience of good (and bad)

management. Research and Development Management, 35(5), 473-482. doi:

10.1111/j.1467-9310.2005.00404.x

Schneidewind, N. (2007). A quantitative approach to software development using IEEE

982.1 [Electronic version]. IEEE Software, 24(1), 65-72. Retrieved July 29,

2009, from ProQuest database.

Schram, T. H. (2006). Conceptualizing and proposing qualitative research (2nd ed.).

Upper Saddle River, NJ: Merrill Prentice Hall.

Scott, W. R., & Davis, G. F. (2007). Organizations and organizing: Rational, natural,

and open systems perspectives. Upper Saddle River, NJ: Prentice Hall.

Sen, Z., & Zheng, Y. (2007). The relation of CMM and software lifecycle model. Eighth

ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing, 3, 864-869. doi:

10.1109/SNPD.2007.318

Shank, G. D. (2006). Qualitative research: A personal skills approach (2nd ed.). Upper

Saddle River, NJ: Merrill Prentice Hall.

Shenvi, A. A. (2008). Design for six sigma: Software product quality. Proceedings of

the 1st Conference on India Software Engineering, 97-106. Retrieved August 31,

2009, from ACM Digital Library database.

Siddiqui, M. S., Hussain, S. J., & Hussain, S. (2006). Comprehensive software

development model. IEEE International Conference on Computer Systems and

Applications, 353-360. Retrieved August 26, 2009, from IEEE Computer Society

Digital Library database.

www.manaraa.com

194

Sommerville, I. (2007). Software engineering (8th ed.). Harlow, England: Pearson

Education Limited.

Stackpole, B. (2008). All systems go. Design News, 63(5), 61-63. Retrieved August 5,

2009, from EBSCOhost database.

Steeneken, K. (2009). Towards an integral leadership vision in software development.

Integral Leadership Review, 1-11. Retrieved January 24, 2010, from EBSCOhost

database.

Stephenson, S. V., & Sage, A. P. (2007). Information and knowledge perspectives in

systems engineering and management for innovation and productivity through

enterprise resource planning. Information Resources Management Journal,

20(2), 44-61. Retrieved November 10, 2008, from ProQuest database.

Subramanian, A. M., & Soh, P. (2008). Knowledge integration and effectiveness of open

source software development projects. IIMB Management Review, 20(2), 139-

148. Retrieved August 19, 2009, from EBSCOhost database.

Subramanian, G. H., Klein, G., Jiang, J. J., & Chan, C. (2009). Balancing four factors in

system development projects. Communications of the ACM, 52(10), 118-121.

doi: 11.1145/1562764.1562794

Sun, Y. (2008). Business-oriented software process improvement based on CMM and

CMMI using QFD. (Ph. D. dissertation, Missouri University of Science and

Technology, 2008). Retrieved March 6, 2010, from ProQuest Dissertations and

Theses: Full Text. (Publication No. AAT3318731).

www.manaraa.com

195

Suzuki, L. A., Ahluwalia, M. K., Arora, A. K., & Mattis, J. A. (2007). The pond you

fish in determines the fish you catch: Exploring strategies for qualitative data

collection. The Counseling Psychologist, 35(2), 295-327. doi:

10.1177/0011000006290983

Tarabishy, A., Solomon, G., Fernald, L. W., & Sashkin, M. (2005). The entrepreneurial

leader’s impact on organization’s performance in dynamic markets. Journal of

Private Equity, 8(4), 20-29. Retrieved September 7, 2009, from EBSCOhost

database.

Taylor, V. (2007). Leadership for service improvement: part 3. Nursing Management,

14(1), 28-32. Retrieved August 9, 2009, from EBSCOhost database.

Telang, R., & Wattal, S. (2007). An empirical analysis of the impact of software

vulnerability announcements on firm stock. IEEE Transactions on Software

Engineering, 33(8), 544-562. doi: 10.1109/TSE.2007.1015

Tesch, D., Kloppenborg, T., & Frolick, M. (2007). IT project risk factors: The project

management professional perspective. The Journal of Computer Information

Systems, 47(4), 61-70. Retrieved October 4, 2008, from ProQuest database.

The Standish Group. (2009). CHAOS summary 2009. [Brochure]. New Yamouth,

Massachusetts: Author.

Wallace, L., & Keil, M. (2004). Software projects risks and their effect on outcomes.

Communications of the ACM, 47(4), 68-73. Retrieved October 3, 2008, from

EBSCOhost database.

www.manaraa.com

196

Warzynski, C. C. (2005). The evolution of organizational development at Cornell

University: Strategies for improving performance and building capacity.

Advances in Developing Human Resources, 7(3), 338-352. doi:

10.1177/1523422305277175

Wirfs-Brock, R. J. (2008). Designing then and now. IEEE Software, 25(6), 29-31.

Retrieved July 20, 2009, from ProQuest database.

Wirth, N. (2008). A brief history of software engineering. IEEE Annals of the History of

Computing, 30(3), 32-39. Retrieved August 20, 2009, from IEEE Computer

Society Digital Library database.

Woolridge, R. W., Hale, D. P., Hale, J. E., & Sharpe, R. S. (2009). Software project

scope alignment: An outcome-based approach. Communications of the ACM,

52(7), 147-152. doi: 10.1145/1538788.1538822

Xu, L., & Brinkkemper, S. (2007). Concepts of product software. European Journal of

Information Systems, 16(5), 531-542. Retrieved August 8, 2009, from ProQuest

database.

Yang, F., & Mei, H. (2006). Development of software engineering: Co-operative efforts

from academia, government and industry. Proceedings of the 28th International

Conference on Software Engineering, 2-9. Retrieved August 21, 2009, from

ACM Digital Library database.

www.manaraa.com

197

APPENDIX A: PERMISSION TO USE PREMISES

www.manaraa.com

198

www.manaraa.com

199

APPENDIX B: STUDY INVITATION

www.manaraa.com

200

UNIVERSITY OF PHOENIX

INFORMED CONSENT: PARTICIPANTS 18 YEARS OF AGE AND
OLDER

Dear Participant,

My name is name of student and I am a student at the University of Phoenix working on a
Doctor of Management in Organizational Leadership for Information System Technology
degree. I am conducting a research study entitled Effective Software Engineering
Leadership for Development Programs. The purpose of the research study is to
investigate leadership practices applied to software development programs to determine
which processes are effective, beneficial, and applicable to achieving successful program
outcomes.

I would like to invite you to participate in the research study. If you decide to participate,
the study will require approximately 20 minutes to complete an electronic questionnaire
on software engineering. Your participation in this study is voluntary. If you choose not
to participate or to withdraw from the study at any time, you can do so without penalty or
loss of benefit to yourself. The results of the research study may be published but your
identity will remain confidential and your name will not be disclosed to any outside
party.

In this research, there are no foreseeable risks to you.

Although there may be no direct benefit to you, a possible benefit of your participation is
the feedback provided could result in the identification of new leadership processes,
approaches, and methodologies for improving software development initiatives.

If you have any questions concerning the research study, please call me at student phone
number or NAME@email.phoenix.edu

As a participant in this study, you should understand the following:

1. You may decline to participate or withdraw from participation at any time
without consequences.

2. Your identity will be kept confidential.
3. The researcher has thoroughly explained the parameters of the research study and

all of your questions and concerns have been addressed.
4. Data will be stored in a secure and locked area. The data will be held for a period

of 3 years, and then destroyed.
5. The research results may be used for publication.

SURVEY IS AVAILABLE AT:

www.manaraa.com

201

APPENDIX C: INFORMED CONSENT

www.manaraa.com

202

UNIVERSITY OF PHOENIX

Informed Consent: Participants 18 years of age and older

Dear Participant,

My name is name of student and I am a student at the University of Phoenix working on a
Doctor of Management in Organizational Leadership for Information System Technology
degree. I am conducting a research study entitled Effective Software Engineering
Leadership for Development Programs. The purpose of the research study is to
investigate leadership practices applied to software development programs to determine
which processes are effective, beneficial, and applicable to achieving successful program
outcomes.

Your participation will involve completing an online questionnaire requiring
approximately 20 minutes. Your participation in this study is voluntary. If you choose not
to participate or to withdraw from the study at any time, you can do so without penalty or
loss of benefit to yourself. The results of the research study may be published but your
identity will remain confidential and your name will not be disclosed to any outside
party.

In this research, there are no foreseeable risks to you.

Although there may be no direct benefit to you, a possible benefit of your participation is
the feedback provided could result in the identification of new leadership processes,
approaches, and methodologies for improving software development initiatives.

If you have any questions concerning the research study, please call me at student phone
number or NAME@email.phoenix.edu

As a participant in this study, you should understand the following:

1. You may decline to participate or withdraw from participation at any time
without consequences.

2. Your identity will be kept confidential.
3. The researcher has thoroughly explained the parameters of the research study and

all of your questions and concerns have been addressed.
4. Data will be stored in a secure and locked area. The data will be held for a period

of 3 years, and then destroyed.
5. The research results may be used for publication.

By electronically accepting the study conditions, you acknowledge that you understand
the nature of the study, the potential risks to you as a participant, and the means by which
your identity will be kept confidential. Your electronic acceptance on this form also
indicates that you are 18 years old or older and that you give your permission to
voluntarily serve as a participant in the study described.

www.manaraa.com

203

 CONTINUE – I agree to participate in the study

EXIT – I do not want to participate in the study

www.manaraa.com

204

APPENDIX D: QUESTIONNAIRE

www.manaraa.com

205

Software Leadership Interview

Section 1 – INFORMED CONSENT

UNIVERSITY OF PHOENIX

Informed Consent: Participants 18 years of age and older

Dear Participant,

My name is name of student and I am a student at the University of Phoenix working on a
Doctor of Management in Organizational Leadership for Information System Technology
degree. I am conducting a research study entitled Effective Software Engineering
Leadership for Development Programs. The purpose of the research study is to
investigate leadership practices applied to software development programs to determine
which processes are effective, beneficial, and applicable to achieving successful program
outcomes.

Your participation will involve completing an online interview questionnaire requiring
approximately 20 minutes. Your participation in this study is voluntary. If you choose not
to participate or to withdraw from the study at any time, you can do so without penalty or
loss of benefit to yourself. The results of the research study may be published but your
identity will remain confidential and your name will not be disclosed to any outside
party.

In this research, there are no foreseeable risks to you.

Although there may be no direct benefit to you, a possible benefit of your participation is
the feedback provided could result in the identification of new leadership processes,
approaches, and methodologies for improving software development initiatives.

If you have any questions concerning this research study, please contact me at student
phone number or NAME@email.phoenix.edu

As a participant in this study, you should understand the following:

1. You may decline to participate or withdraw from participation at any time without

consequences.
2. Your identity will be kept confidential.
3. The researcher has thoroughly explained the parameters of the research study and

all of your questions and concerns have been addressed.
4. Data will be stored in a secure and locked area. The data will be held for a period

of 3 years, and then destroyed.
5. The research results may be used for publications.

www.manaraa.com

206

By electronically accepting the study conditions, you acknowledge that you understand
the nature of the study, the potential risks to you as a participant, and the means by which
your identity will be kept confidential. Your electronic acceptance on this form also
indicates that you are 18 years old or older and that you give your permission to
voluntarily serve as a participant in the study described.

 CONTINUE – I agree to participate in the study

 EXIT – I do not want to participate in the study

www.manaraa.com

207

Section 2 – Background Information

1. Which title best describes your job function?

 Executive Leadership
 Team Leader
 Senior Software/System Engineer
 Software/System Engineer
 Team Member
 Administrative Support
 If other, please specify

2. How many years experience do you have leading software development efforts?

 Less than 1 year
 1 – 5 years
 6 – 10 years
 11 – 15 years
 16 – 20 years
 More than 20 years

3. How many years of experience do you have in software engineering?

 Less than 1 year
 1 – 5 years
 6 – 10 years
 11 – 15 years
 16 – 20 years
 More than 20 years

www.manaraa.com

208

Section 3 – Leadership and Software Process Questionnaire

4. What do you feel are the most effective leadership approaches for successful
programs? Why do you feel these approaches are effective?

5. What do you feel is the most important leadership characteristic to support
software development programs? Why do you feel this characteristic is the most
important?

6. In your experience, what leadership capabilities or approaches have contributed to

the success of software development programs? Why do you feel they contributed
to program success?

7. In your experience, what leadership capabilities or approaches have contributed to
the delay or failure of software development programs? Why do you feel they
contributed to program delay or failure?

www.manaraa.com

209

8. What do you feel is the most important process for successful software
development? Why do you feel this is the most important process?

9. What software development methodologies have you applied that are the most
effective? Why do you feel these methodologies were the most effective?

10. What software development methodologies have you applied that are ineffective?
Why do you feel these methodologies were ineffective?

11. Please provide any additional comments or insights you would like to share on
software leadership capabilities or software processes.

www.manaraa.com

210

Section 4 – Consent to Survey

Thank you for participating in the study.

Do you consent to including your responses in the research study?

 YES – Include my responses to the study

 NO – Withdraw from the study and delete all responses

www.manaraa.com

211

APPENDIX E: DEMOGRAPHIC INFORMATION FOR OPEN-ENDED QUESTIONS

www.manaraa.com

 212

Table E-1

Job Functions for Respondents to Open-Ended Questions

 Open-Ended Question
 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Total Respondents 68 69 57 61 54 50 46 37

Job Function

 Executive Leadership 4 4 4 4 4 3 2 2

 Team Leader 18 19 17 18 14 15 14 10

 Senior Software/
 System Engineer 20 20 12 15 13 11 10 9

 Software/
 System Engineer 16 16 16 16 16 14 14 11

 Team Member 5 5 4 4 4 4 3 2

 Administrative Support 1 1 1 1 0 0 0 1

 Other 4 4 3 3 3 3 3 2

www.manaraa.com

 213

Table E-2

Experience Leading Software Development for Respondents to Open-Ended Questions

 Open-Ended Question
 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Total Respondents 68 69 57 61 54 50 46 37

Years of Experience Leading
Software Development

 Less Than 1 Year 11 11 9 9 7 7 7 5

 1 – 5 Years 16 17 14 17 14 12 10 10

 6 – 10 Years 16 16 12 13 13 12 12 8

 11 – 15 Years 10 10 9 9 9 9 8 7

 16 – 20 Years 9 9 7 7 6 6 5 4

 More Than 20 Years 6 6 6 6 5 4 4 3

www.manaraa.com

 214

Table E-3

Experience in Software Engineering for Respondents to Open-Ended Questions

 Open-Ended Question
 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Total Respondents 68 69 57 61 54 50 46 37

Years of Experience in
Software Engineering

 Less Than 1 Year 7 7 5 5 4 4 4 3

 1 – 5 Years 13 13 12 13 12 11 11 9

 6 – 10 Years 12 13 11 11 9 9 8 6

 11 – 15 Years 8 8 7 8 6 6 5 4

 16 – 20 Years 11 11 7 9 9 8 7 5

 More Than 20 Years 17 17 15 15 14 12 11 10

